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with Applications to Dynamics and Controls
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Engineering Mechanics

(ABSTRACT)

A general nonlinear, nonplanar unsteady vortex panel method for potential-flow is

developed. The surface is modeled as a collection of triangular elements on which the vorticity

vector is piecewise linearly varying. The wake emanates from the sides and trailing edges of

, the thin lifting surfaces and is modeled as a progressively formed collection of vortex fila-

ments. This model provides a continuous pressure distribution on the surface while allowing

the wake to roll up as tightly as needed. The wake position is determined as part of the sol-

ution and no prior knowledge of the position or strength is assumed. An adaptive grid tech-

nique is used to redistribute the circulation of the vortex filaments of the wake as the wake

sheet spreads. The aerodynamic model is coupled with dynamic equations of motion. Forced

oscillation tests are conducted on flat rctangular and delta wings. Dynamic tests are per-

formed to predict wing rock of a slender delta wing restricted to one degree of freedom in roll.

The aerodynamic/dynamic model is coupled with control laws that govern the motion of

* flaperons so that a prescribed pitch motion is executed and wing rock is suppressed. (300

pages, 107 figures )
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Chapter I

Introduction

1.1 Problem Statement

The goal of this research are two-fold. The first is to develop a numerical simulation

of general unsteady, subsonic-aerodynamic flowfields applicable, but not limited, to low as-

pect ratios and high angles of attack. The second is to develop a method that predicts the

flowfield, motion of the body, and the control surface configuration, as functions of time, si-

multaneously and interactively.

1.2 Scope of Development

Obviously the stated problem is too complex to be properly addressed in any single

effort; therefore, the scope of this development is restricted to rigid, constant velocity aircraft

of simple configuration. Included in this effort is a newly developed unsteady aerodynamic

model that has a progressively developed deforming wake, a three degree of freedom, in an-

gular orientation, dynamic simulation and control surface movement that includes solving for

the control motion that results in a specified maneuver. Since this investigation is primarily

concerned with surfaces influenced by leading edge separation and the simplest configuration

of this type is a delta wing, delta wings are primarily used in this effort.

1.3 Motivation for Research

As testing of aircraft designs becomes more expensive, computers become more

powerful and the need for more exacting designs continues, computational methods have and

will continue to become more prominent. To facilitate the use of computational methods by

designers, the tools need to be developed and demonstrated. The present work extends a

previously developed method, so that a more general computer simulation can be accom-

phshed. The unique areas presented in this work are (1) an aerodynamic model previously
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restricted to steady or quasi-steady flows is extended to general unsteady motion and (2) a

control law is developed and evaluated using control surface motion coupled with an

aerodynamic-dynamic simulation. Both these improvements are steps in the direction of al-

lowing aircraft designers to evaluate designs using computational methods.

Low-speed, high-angle-of-attack aerodynamic/dynamic interaction has not tradi-

tionally received much attention in the development of aircraft. For example Young [1984], in

his summary of the AGARD conference on vortex flows, presented the breakdown of the hours

of wind-tunnel tests on the F-16, showing that in approximately eleven thousand hours there

were no tests conducted for subsonic dynamic tests. This was done even though there can

be considerable variation in aerodynamic parameters in unsteady flight. To further emphasize

the need for the present investigation let me quote Orlik-Ruckemann [1979] . He says, 'Al-

* though the manifestations of high angle-angle-of-attack or asymmetrical flows in terms of their

effects on dynamic stability parameters are slowly becoming known, the nature of these flows

- especially in oscillatory or unsteady situations - is still largely undefined. ... More research

into the basic fluid dynamics aspects of dynamic stability problems, especially high angles of

attack, is therefore needed."

Presently there are several good methods for predicting steady aerodynamic loads

I on aircraft at low angles of attack for slow speeds. This work deals not only with low but also

with high angles of attack. The motivation for investigating higher angles of attack with vortex

dominated flow is that many modern aircraft routinely fly in this regime and recently efforts

have been made to harness the vorticity-induced forces by the use of strakes, leading-edge

blowing, and vortex channels. Most numerical methods have trouble predicting the forces and

moments for these conditions, and most cannot be used for unsteady motion. One reason

they have trouble at high angles of attack is the fact that the flow around the wing is heavily

.-- influenced by the vortex separation along the leading edge.

Hoeijmaker [1984] gave a comprehensive review of computational methods for de-

termining aerodynamic characteristics of vortical type flows. He started by discussing different

methods for modeling the wake. He reviewed the discrete-vortex approximation, "cloud in

cell" methods, panel methods, and vortex layer with finite core methods. Hoeijmaker pointed

Chapter 1 2
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out that the biggest drawback to using a system of discrete vortex cores is that eventually this

i approximation leads to "chaotic motion". As demonstrated by Mook, Roy, Choksi and

Alexander [1987] for two-dimensional cases, a discrete vortex system can accurately simu-

late the tight roll-up and double branching of the vortex sheet before any unrealistic vortex

core positioning is encountered. Of the other methods only the vortex layer and finite core

methods remain numerically stable. But, with these methods the details of the wake are lost

in the accumulated vortex core. With the two-dimensional simulation as inspiration the dis-

crete vortex system was chosen for the wake.

Hoeijmaker then reviewed methods for three-dimensional flows which include the

leading-edge-suction analogy of Polhamus, the vortex-lattice method, panel methods, and

Euler equation methods. He believes that panel methods have a decided advantage over the

0 suction analogy and the vortex-lattice method. Thus a panel method is used for the body.

In conclusion Hoeijmaker stated, "The main limitation of the panel-method approach

is that the topology of the vortex flow must be known in advance". In reviewing Euler equation

methods he concluded "It appears that also in the case of Euler methods the topology of the

* - vortex structure must be known in advance if the grid is to be constructed with sufficien. re-

-.- solution at the right location." This conclusion further emphasizes the need for developing

an unsteady model because the topology of the wake is not known prior to starting the anal-

ysis: rather it is part of the solution. An unsteady model can be started impulsively and the

wake will evolve with time. Thus for the present method the topology of the wake surface does

not have to be known a priori. The present method also uses an adaptive grid technique for

* the wake surfaue as this surface develops with time.

To reiterate, the thrust of this research effort is in the development and validation of

a computational unsteady aerodynamic-dynamic model for low speed, high-angle-of-attack,

flight conditions. The method chosen for the aerodynamic model is a first-order panel method.

The body is modeled as a collection of triangular elements over which the surface vorticity

varies linearly. The wake is modeled as a collection of discrete vortex cores in a method

similar to the vortex-lattice methods, with the added feature of adapting the grid for the wake

surface. The dynamic equations are coupled to the aerodynamic model by a predictor-

Chapter 1 3
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corrector algorithm. Finally the control-surface motion is determined to produce a

predescribed maneuver.

1.4 Method of Approach

The first task was to develop a general unsteady aerodynamic model for aircraft that

is valid at low speeds over a wide range of angles of attack. This development was a slow

-v evolution with validation of each new feature as it was completed. The development and val-

idation was carried out in seven steps. First the model was developed for closed nonlifting

bodies. This was then validated by comparison with analytical solutions for several bodies.
:,r.

The method was then extended to lifting surfaces with edge separation. In this phase there

where two areas of validation. As mentioned, the wake was modeled as a lattice of constant

strength vortex cores. This approximation was compared with the velocity field induced by the

- comparable vortex sheet. The second area was a comparison with limited experimental re-

suits, for aerodynamic forces, moments and pressure distributions. The unsteady aerodyna-

U. mic results were then validated by comparing the results for forced oscillation tests with

predicted results. The integration technique was validated by comparison with exact solutions

for a second-order differential equation. The aerodynamic-dynamic coupling was tested by

using free vibration tests. These results were compared with experimental results. The con-

trol surfaces were then incorporated. The control surface effectiveness was evaluated by

holding the surfaces at a fixed deflection and calculating the steady aerodynamic loads. The

entire integration was used to develop a control law associated with a prescribed pitch ma-
0

neuver and to suppress wing rock.

The development and validation was not the only purpose in this effort. Within this

development the method was tested to determine its convergence properties. Convergence

* was tested by increasing the number of elements during the steady analysis.

As can be seen in this approach every effort has been made to include a wide range

of test cases and as many comparisons with experimental results as possible. This effort is

not intended as a complete comparison with other computational methods. The only method

compared is the general unsteady vortex-lattice method. This method was chosen for com-
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parison because it is a widely used corn pi tntion al mcthod for lifting surfaces with edge sep-

~aration. A comparison is made between the vortex-lattice and present methods for total

" aerodynamic forces of low-aspect-ratio wings.

', ,,, '1.5 Assumptions

- ,%, ' The assumptions used in any development directly influence the range of applicability

- '" ' "and thus they must be spelled out explicitly. The first restriction is that a potential model is

used. Therefore all the assumptions used to arrive at Laplac'es equation are also used in this

.,- development. Second the separation lines are known a priori. This restriction is required be-

.. .cause there has not been any attempt, in this effort, to include the boundary-layer calculations.

Finally it is assumed that vortex bursting does not significantly influence the wing surface. This

"" assumption is used throughout this paper, even though it was shown by Nakamura, Leonard

" sumptions will be made during the actual mathematical development, but these assumptions

.. . are non-restrictive in that they are handled within the program. These assumptions make the

;v... model valid for low speeds where the higher order separations (secondary, etc.) are not

='. "significant to the aerodynamic loads and at angles of attack or dynamic geometry where

-. vortex bursting does not significantly affect the surface.

• -- "1.6 Review of The Literature

,-. .The literature is reviewed for all known vortex-panel methods. This review is followed

... ~~by a brief discussion of the development of the vortex-ltiemtos Finally, a review of

:. . experimental testing that is used in the validation of the aerodynamic/dynamic model is pre-

0 sented.

'-" The first attempt at using triangular panels of linearly varying vorticity was made by

"-%'- Yen [1982"]. In his development, Yen modeled a series of delta and rectangular wings using

';' triangular panels of linearly varying vorticity. He modeled the wake as a combination of tri-

-,,, vangular panels of vorticity, a semi-infinite vortex sheet and a concentrated vortex core. The

" "Chapter 15LN
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core was used when the wake vortex system rolled up tightly. The vorticity on the lifting sur-

face and in the wake and the position of the wake were determined by an iterative procedure.

First, for an assumed position of the wake, the strength of the vortex sheets, was determined

by minimizing the sum of the square of the errors of the algebraic equations that represent

the no-penetration and the conservation (the divergence of the vorticity vector on the sheets

is zero) conditions. The Kutta condition was imposed by requiring the vorticity be perpendic-

ular to the edge of the surface. Once the vorticity was known the wake position was adjusted.

The vorticity of the sheets was then re-determined. The iteration continued until the shape of

the wake converged. This method had several problems associated with it: the method could

only be applied to steady flow, the Kutta condition was imposed by requiring the vorticity be

perpendicular to the edge of the surface and the roll-up of the wake had to be restricted by

employing a capturing vortex core, the strength of the wake sheet was not adjusted as the

wake spread, and the method could be applied to only flat uncambered surfaces.

About the same time Kandil, Chu and Yates [1980] presented the development of

what they called a "Nonlinear Hybrid Vortex' method. They used quadrilateral panels with

linear vorticity distribution for the lifting surface and triangular panels for the wake. They de-

veloped an approximation for far-field calculations using concentrated vortex cores. They

found that the core approximation could be used with accuracy at a distance of five times the

local length of the triangular element. In this first paper only the setup for solving the problem

was presented. Kandil, Chu and Tureaud [1984] extended the development to unsteady flow.

However, results were presented for only steady motion of rectangular plates with no wing tip

separation and no far field calculations were included. One problem with this approach could

have been the method used to impose the Kutta condition.

Kim [1985] extended the method developed earlier by Yen through eliminating a

couple of problem areas. He started with a two-dimensional model in which the surface was

represented by a set of panels with linearly varying vorticity, and the wake was modeled as

a system of discrete vortex cores emanating from the trailing edge. The strength of the trailing

edge core was related to the change in circulation of the airfoil and the Kutta condition was

applied by setting the vortex sheet strength to zero at the trailing edge. This method had all
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the elements of the future three-dimensional model. This method, as refined by Mook et al

[1987] gave very good agreement with experimental results for both steady and unsteady

two-dimensional potential-flew problems. Using this two-dimensional method as a guide, Kim

then developed a steady three-dimensional model. He used triangular panels of linearly

varying vorticity for lifting and nonlifting bodies. For lifting bodies the wake was modeled as

a set of discrete vortex filaments emanating from the sharp edge. This effectively eliminated

two problems with Yen's approach: the wake vortex sheet could now roll up as tightly as

needed, and the strength of the vortex sheet was automatically adjusted as the sheet spread.

However, the Kutta condition was still imposed in the same way as that by Yen. In the solution

of the steady problem the position of the wake, the wake strength and the vorticity strength

0 of the lifting surface were determined iteratively until the strengths and positions converged.

- One undesirable feature of this method is the use of a leading-edge extension to move the

'V wake filaments away from the actual separation point. This feature is eliminated in the pres-

ent model.

To the best of my knowledge, since Kim's development, there has been no further

contributions using the idea of vortex panels for the lifting surface.

-_ ' To determine the applicability and usefulness of the present method, some results are

compared with results of the vortex-lattice method. Therefore, this method is briefly reviewed.

The vortex-lattice method has been widely used for both steady and unsteady aero-

- dynamics for a variety of bodies and lifting surfaces. There is some duplication of effort using

this method but generally this is only for the simplest configurations. Belotserkovskii [1969]

was apparently the first to present results using the vortex-lattice method. He obtained steady

total force and moment about the leading edge for a unit-aspect-ratio rectangular flat plate

S wing tip separation. Kandil [1974] and Konstadinopoulos [1981] also presented results for

this configuration. Konstadinopoulos compared his method with those of Belotserkovskii and

Kandil: the normal force showed no difference in the three solutions, the moment showed a

* slight difference with Kandil's not comparing well with the other two. Konstadinopoulos also

used this configuration to show convergence of the method as the number of elements is in-
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creased but convergence was not outstanding and the normal force coefficient was the only

aerodynamic quantity presented.

V The second steady configuration, evaluated by several authors, is a unit-aspect-ratio

delta wing. This configuration was analyzed by Maddox [1973], Kandil [1974], Kandil, Mook

and Nayfeh [1974], Konstadinopoulos [1981] and Elzebda [1986]. The last two attempted to

Ia, show how the normal force converges as the number of elements increases, but the conver-

gence is not uniform for the two supposedly identical methods.

The potential-flow solutions for flow around closed non-lifting bodies obtained by the

...-. ." vortex-lattice method were presented by Asfar, Mook and Nayfeh [1978]. Four bodies were

-. analyzed: a sphere, an ellipsoid of revolution, an ogive-cylinder and a cone-cylinder. For the

.', sphere fifty equidistant ring elements were used. The results show, even for this large mesh,

* that the pressure distribution differs slightly from the analytical solution.

The unsteady analysis using the vortex-lattice method was presented by Thasher

[1979] and Atta [1976]. Thasher presented time histories of the normal force and pitching-

moment coefficients for a rectangular wing of a unit-aspect-ratio pitching about its leading and

trailing edges. Thrasher also presented results for a yawing type motion of a rectangular

wing. The rolling moment for an aspect ratio 0.71 delta wing was presented by Atta for both

constant and varying roll rates.

The coupling of the aerodynamic and dynamic equations was first accomplished by

Thrasher [1977] using a fourth-order predictor-corrector scheme. This motivated

a " Konstadinopoulos, Mook and Nayfeh [1981] to attempt a numerical simulation of one degree

* of freedom wing rock of slender delta wings. Elzebda et al [1985] extended the investigation

to two degree of freedom dynamic model. Thrasher [1979] also presented results for rectan-

gular wings with flaps.

There has been much experimental work for wings dominated by vortex flows. Unfor-

tunately it seems as if there is more on flow visualization than dynamic testing. Apparently

the first static tests on slender delta wings were performed by Tosti [1947]. He determined

the classical stability derivatives for delta wings with aspect ratios of 0.5, 1.0, 2.0, and 3.0. A

test of flat or nearly flat plates with various planforms was conducted by Peckham [1958]
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Included in the various planforms are delta wings of aspect ratio 1.00, 1.33 and 1.67. Peckham

-. also included pressure distributions as Dart of the results. Shanks [1963] investigated a series

of six sharp, thin delta wings with leading-edge-sweep angles between 70 and 84 degrees. The

wings used by Shank had a centerline protrusion on the upper surface that housed the sting

balance. His results are not consistent with the other experiments. He also presented the

pitching-moment data referenced to the center of gravity location instead of the mean aero-

dynamic chord, which is the location for the other experiments. Earnshaw and Lawford

[1964] also studied a series of six delta wings; the range of leading edge sweep for this series

was 45 to 76 degrees. The pitching-moment data showed significant scatter for this set of ex-

periments. Wentz and Kolman [1968] also investigated a series of delta wings with varying

leading-edge sweep angles in increments of 2.5 degrees. The pitching-moment results for

these tests were presented for only higher angles of attack. Hummel [1979] thoroughly in-

vestigated the flow around a unit-aspect-ratio delta wing at 20.5 degrees angle of attack. For

this angle of attack, he presented pressure distributions on the wing and pressure contour

plots in series of planes down stream of the wing perpendicular to the flow. The wing used

by Hummel was flat on the top but diamond shaped on the bottom. This was done so that the

pressure probes could be included. He also presented force and moment data for a range of

angles of attack. Because the wing was not flat the aerodynamic quantities are not zero at

zero angle of attack. Steady pressure distributions were presented by Harvey [1958], and

Fink and Taylor [1955] for an aspect-ratio 0.71 delta wing at varying yaw orientations. The

pressure distribution was presented at only one chord location. The static-test results for

sharp delta wings are not always in good agreement.

Forced-oscillation tests were conducted about all three axis of the wing. Woodgate and

Pugh [1963] and Woodgate [1968]performed cyclic pitch oscillation tests of two sharp delta

wings. These wings had aspect ratios of 0.654 and 1.484. Nguyen, Yip and Chambers [1981]

conducted forced rolling oscillation and rotary yawing tests on an aspect ratio 0.71 delta wing.

Schlottmann [1971] presented results for forced rolling motion of a unit-aspect-ratio delta

wing showing the effect of roll rate on the rolling-moment coefficient. The present method will

be compared with the results of Woodgate and Pugh.
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V The only free oscillation tests of delta wings were conducted by Nguyen et al [1981]

and Levin and Katz £19821. Both experiments were run to investigate one-dimensional wing

• .. rock. For a complete review of the investigation of wing rock see Elzebda [19851.

1.7 Method of Presentation

.4- Chapter II contains the complete development of the aerodynamic model. The formu-

lation for closed non-lifting bodies will be presented in its entirety before the lifting problem

is discussed. Chapter III contains the development of the dynamic model and the method

used to couple the aerodynamics and dynamics. Chapter IV contains the control surface

analysis and the results of simulated wind-tunnel tests. Finally the conclusions and recomm-

endations are presented in Chapter V.
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Chapter II

Aerodynamic Model

-In this chapter the aerodynamic model is completely developed. As mentioned in

Chapter I, a panel method is used to describe the potential-flow aerodynamics. The bound

surface is modeled as a collection of triangular panels on which the surface vorticity vector

is piecewise linearly varying. The free vortex sheet, or wake, is modeled as a lattice of dis-

crete vortex cores which is a generalization of the procedure employed in the unsteady

0 vortex-lattice method. This choice of modeling capitalizes on the best features of both panel

methods and vortex-lattice methods in the sence that the pressure on the bound surface is

-,-- continuous, and the wake is progressively formed in the force-free position.

4'-. In this chapter the mathematical formulation of the potential-flow problem is presented

in several subsections. First, the problem for non-lifting bodies and the integral equation for

I.'i the velocity induced by a region of vorticity are developed. Next the evaluation of the integrals

,, is presented for a general triangular element. The method for joining the elements is devel-

oped. The solution technique and examples for non-lifting bodies are discussed. The

equation for determining the pressure on the surface is derived. Next the problem for lifting

surfaces is presented. This formulation includes the features unique to lifting surfaces, namely

the induced velocity of a vortex core, edge compatibility conditions, the Kutta condition and

the development of the wake. The method used for redistributing the vorticity in the wake as

the lattice stretches is presented. This is followed by a discussion of the tests performed to

determine how well the discretized wake simulates a continuous vortex sheet. The general

• matrix equations are then developed. The results of the convergence and accuracy tests for

thin lifting surfaces are discussed. The results for the two basic wing planforms are presented

and compared with experimental results and results obtained from the vortex-lattice method.
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2.2 Formulation for Non-lifting Closed Bodies

The continuity equation for incompressible flow is

-. div V =0, (2.2-1)

where V is the total velocity of the fluid. The boundary conditions for non-lifting bodies are that

". ~there is no flow through the body ( the no-penetration condition ), which can be written as

(Vb - V) - n = 0 on S (2.2-2)

where S is the surface of the body, n is the normal to the surface and V, is the velocity of S;

and that the disturbance velocity tends to zero as the distance from the body is increased.

.-- The total velocity can be written as the sum of the disturbance velocity V, and the

. free-stream velocity V,, for the case where the fluid is moving past the body, that is a wind-

.. tunnel experiment, or as the difference of the disturbance velocity and the velocity of the body

V, moving through the stationary fluid, free flight. The total velocity is then

v = Vd + Vf. (2.2-3)

Next we determine the disturbance velocity induced by the body. By definition

"(r) = curl V,(r) (2.2-4)

where 12(r) is the vorticity field. The derivation presented by Karamcheti [1980] is followed.

It follows from Equation 2.2-1 that field is chosen,

V= curl A, (2.2 -5)

where A is a twice continuously differentiable vector field, the continuity equation gives

div (curl A) =0 (2.2 - 6)
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which is satisfied for A. One can further stipulate that div A 0, Karamcheti [1980].

Therefore, the problem of finding the disturbance velocity reduces to one of finding the sol-

. -', ution of the following equation:

= -V VA. (2.2-7)

.. Green's theorem can be used to show that

'I

,A(rt) = IJ 9 dT (2.2-8)

4 7. ,.,-

* where Q is the vorticity at point s, r" is the point of interest and T is the region of the flow field

containing vorticity. In the present work, the vorticity is confined to a thin region between two

surfaces S and S,; S is on and S, is slightly outside the body ( a boundary layer of vorticity ).

In the present model, we let the thickness of the vorticity-containing region approach zero. In

the limiting process, two things happen: (1) IQI approaches infinity while the product of 16!

-. .*and the thickness remains constant, and (2) 0 becomes tangent to the surface S. We can

* write

J.:

Y" (S lim 0h (2.2-9)
l. I -oo, h-0

* where h is the distance across the vorticity containing region and s" is the position of a point

on S. Clearly y is the discontinuity, or jump, in the surface velocity across S. Equation 2.2-8

,..-. can be written as

s " s(r,t)=-- s (2.2-10)

* As a consequence, the entire disturbance velocity is generated by an integral over the surface

of the body, S.
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The constraint equation comes from the fact that, the divergence of the curl of a vector

is always zero. Thus, any vector field that is a possible representation of the surface velocity

must satisfy

div 0 =. (2.2-12)

The problem is to find the vector y(r) that most nearly satisfies Equation 2.2-2 subject to

2.2-12.

.3, 2.3 Velocity Induced by a Triangular Element

The disturbance velocity given by Equation 2.2-11 is approximated by representing the

surface of the body by a system of triangular elements, determining the velocity field induced

by each element, and then summing the results. A local coordinate system is used to obtain

the contribution from each element. The local coordinate frame always has the positive x di-

rection along the longest side of the triangle. The positive y direction is in the plane of the

triangle such that the vertex not on the x axis has positive x and y coordinates. The local z

direction completes the right-hand system. A general triangular element is shown in

Figure 1.
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" (b)

(0.0) (0,0)

Figure 1. Triangular Element and Local Coordinate System

In the local coordinate frame the surface velocity vector is in the x and y directions.

That is

"~I ,,. Y X" x + "fy J . ( 2 .3 - 1 )

-he s,,ace velocity vector of each element is approximated by a linearly varying function;

thus, three basis functions are needed to express the linear variation of each component of

this vector. The following are used:

f=a, x + b1 y + 1 (2.3-2)

f2 =a 2 x + b2 y (2.3-3)

f3 =a 3 x + b3 Y (2.3-4)

where

..."1 b b-a 1 b 11 ac a2 =--, b 2 =--, a3 =0 and b3=1 (2.3-5)

and a, b and c are the coordinates of the vertices in local coordinates as shown in Figure 1.

Basis f, is unity at the origin and zero at the other vertices, basis f, is unity at the vertex (a,O)

and zero at the other vertices, and f3 is unity at vertex (bc) and zero at the others.
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The components of the vorticity vector can be written as

Yx =xl fl+ YX2 f2 + YX3 f3  (2.3-6)

0, I~

II Yl= fl + YYf 2 + Yf 3  (2.3-7)

where the y., and yy, are the six unknown magnitudes at the nodes. In this notation the di-

vergence constraint, Equation 2.2-12, can easily be written as

3 38 Yx ary
div - +-8y -= axi + b, yy=0. (23-8)

ax a

The velocity induced by the vorticity on a triangular element can be expressed in terms of the

y., and yy,.

The following notation is used for the components of the disturbance velocity of an

element in the local coordinate frame:

Vd=Vxi +Vj +Vzk. (2.3-9)

Now let us consider a point in space where the disturbance velocity is to be calculated. In the

local frame of the element, this point has the coordinates x , y, and z, . Then the contribution

to the vector potential A from the vorticity on element i, A,, is given by

A xd A +Ayj (2.3-10)

where

,..,1 ;fSdxdy

A-, j- (YXi f1 + y 2 f2 + Y 3 f3) d (2.3 - 11)

4.7

SS

A '' (y ff3 dxdy (.-2
AY 41 ff (Y1 fl+ y2f2 + y 3f r(231)
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.d.

- r =[(x -x,)2 + (.y-y,)2 + z]'12  (2.3-13)
-4,

and S, is the area of element i. The contribution to the velocity field from the element is given

by

Vy -uAx -7 MY rAxl(.3-4)
,= curl=- - I + 7zp + xpk (2.3-14)

The partial derivatives can be written in the following convenient forms:

' . =y 85 , (2 .3 - 15)

.' . Ax  V _ j i
, O p YXI - (2.3 - 16)

OA Y N x v = aB - xi aB (2.3- 17)
axp ayp aYp

where

B,==ff ftdai (2.3-18)
SI

)B,
-=a i 1l+ bit,4+ (a, x + biyp +6I,)17 + ai Ijo (2.3 - 19)

axp
SP

-= a,I 2 + b,I5 + (a p + b, yp + 6,1) /8 + b,/ 10  (2.3-20)
Oyp

,.B,

= a, 13 + b,/6 + (a, xP + b, + 6,1) /9  (2.3 -21)
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and where the ai and b are defined by Equation 2.3-5 and 6,, is the Kronecker delta. In closed

form, for a general triangle as shown in Figure 1, the integrals /I can be written as

(x,-a)H b +( )H 2 -xpH 3 + - H4 , 12 =ypH -H 2 -yH 3 +H 4

3 =zp H1 - zp H3 , I4 = xp H 5- H6 + xp H7 - H8 + r3 - r1

b ac c H8 yp H9c 6+ b -a H7 - b-a

16=zpH 5 +zH 7 -zH 9 , 17 =-H 1 +H 3 , I8 =-H 5 -H 7 +H 9

/9 = sgn(zp)[J1 + J2 + J3 - AO]

10 = R 1 1  +R 2 Q2 + R3 Q 3 + I Zp I(J1 + J2 + J3- AO), (2.3-22)

where the Hi are defined by

H Q2 H Er2 - r3 l -2 3 Q

~2
[r2 - r a4 Ir H1 , i M3

H4  + H3 5  H3  H6 = + HS

a -ab r3 - r2] xH H.-. H8 + -
7H, H 8 - + 0(7 H7 , H9 =Q 3 . (2.3 -23)

The , are defined by
0

)2 2+2C2
(b - a) b b-a Nb +c-

-2 = c (a -xP) -yp, 3 2

c b C
- % = -'X4 XP + Y',O 5 ' =X + "- yp- b 2  b 2

°Tp+p.€5 2 I • ~
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2 xp+ a  C a2'324)

(b - a) 2  b-a

The r, are defined as

r1 =Lx + y2 + y zJ , 2  r2 =[(b - xp)2 + (c -yP)2 + - 11 2

r3 = [(a -xP) 2 + y 2 + Z"J/ (2.3-25)

The Q, are defined by

Q= [ r1 + r2 + d, 1
2 r1  + r2 - d

= r2 + r3 + d2 ]"" Q2 In r+3d

r2 + r3 - d2

Q3=In r3+rl+03 (2.3-26)
L'-".. r3 + rl -- d3

and the Ji are defined by

sgn(R i ~ ( P' S12  1 ( Izp 1S
1

J= sgn(Rl) tan- - tan-' l l
.R, I r2 IR1 1 r,

""I (zp -L22

" J 2 =sgn(R2) tan -1 R2.z - tan 1  L 2 1L ~ R21 r3 / 1R2  r2 1

J3 sgn(R3) tan-' S 32 -tan -  1 (3 -, (2.3-27).. :..I R3 I r, R., r3

For integrals I and 11o, AO = 27r if the projection of the point of interest onto the local x-y plane

* is inside the triangle, that is if R1, R2 and R, are all positive, and AO = 0 elsewhere. The R, are

given by
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R, = xp, S1 - Yp C1

R2 = (xp - b) S2 - (YP - C) C2

*R 3 =(x - a) S3 - yC 3 , (2.3-28)

the s,, are specified by

S21 =(bXP) C2 + (C -YP)S 2 , S22 (a -X) C2 - yPS2

S31 =(a - xp)C3 yPS3 , S3 2 -XP C3 yp S3, (2.3-29)

the C, and S, are given by

a -b c
C2 d2  S2 -d

C3  -1, S3 0. (2.3-30)

and finally the d, are given by

d, =Eb +±c]1 , d2 =[(a - b 2 ± 2 ' d3 =a. (2.3-31)

The integrals depend solely on the coordinates of the vertices of the triangular ele-

S ment and of the point where the velocity is to be found. Some of the closed-form integrals

were obtained with the help of an article by Hess and Smith[1962]. The complete derivation

of these equations is shown in Appendix 1. The disturbance velocity clearly tends to zero as

* the distance from the singularity (i.e.. element )increases. Thus, the 'infinity condition" is

satisfied.
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The J, are undefined on certain planes. This problem is resolved by evaluating the

limits of J, as these planes are approached and this limit is used as the value of the J, on the
__..

plane. This resolution is appropriate because the Ji are continuous everywhere except along

the edge of the triangular elements. Across the surface of the triangle the normal component

of velocity is continuous, but the tangential components are not. All the limits needed to de-

termine the disturbance vielocity at any point in the field are also evaluated in Appendix I along

with a listing of the subroutine that implements the above equations and limits. Now that the

disturbance velocity at any point is expressed in terms of the vorticity on the surface, the

*' problem of assembling the triangles can now be addressed

2.4 Assembly of the Elements

The contribution to the velocity field induced by one element has been derived, and

now the contributions from all the elements need to be summed. As a preliminary step to

describing this summation, this section describes the procedure used to maintain the direction

and magnitude of the vorticity on the surface as it crosses the edge of adjoining elements.

Two adjoining elements are represented in Figure 2. The nodes ( vertices ) lie on the

actual surface of the body. The unit vector normal to the actual surface at A is N. The surface

vorticity at A, Q, lies in the plane tangent to the actual surface, that is in a plane perpendicular

to N. In the discretized approximation of the surface and the vorticity field, fl is rotated, with

constant magnitude, in the plane defined by Q and N onto the planes of the triangular ele-

ments that have A as a common node. This rotation is an important feature of the present

method. In Figure 2, Y1 and Y2 represent D after D has been rotated onto the planes of ele-

ments one and two, respectively. In the remainder of this discussion only one element is

considered and y is the vorticity vector at the node in the local element plane.
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~Figure 2. Rotation of the Vorticity Vector

-." The problem is posed in terms of the two independent components of ( in the body

. ., ( global ) reference frame. That is, the vorticity vector in the local reference frame of an ele-

AA

ment, 7, is used only in the calculation of the influence coefficients. This vector is not used

to find the solution to Equations 2.2-2 and 2.2-12. The formulas of Section 2.3, make it is nec-

essary to express y in terms of the components of Ql consistent with the rotation described

above. This choice of variables significantly reduces the number of equations and unknowns

of the problem.

V.. The relation between Q and - is determined by defining a vector normal to the plane

of N and Q. By definition

P = N x Q. (2.4-1)

" After a is rotated onto the plane of an element (the rotated Q is denoted ), it is still in the

original plane defined by N and Q; thus,

cP = N x y (2.4-2)

where the constant c has been introduced because the magnitudes of these cross products

can be different. Eliminating P from Equations 2.4-1 and 2.4-2 leads to
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c(Nx ) =/ x7. (2.4-3)

After Q has been rotated into the plane of an element, it still has the same magnitude. Setting

the magnitude of the vorticity on the element equal to that at the node yields

Y2 = C12 + n2 + j12 (2.4-4)

Note that y, and yy are components in the local frame and fl, fl and flz are components in

the body frame. Equations 2.4-3 and 2.4-4 are needed when the triangles are assembled;

however, in their present form they are not useful. To obtain a more useful form of Equation

2.4-3, we first express both sides in the same coordinate frame. This requires the relationship

0 between the local coordinate frame and the body frame. The body frame has unit vectors

I J and K while the local frame has unit vectors i , j and k . The body frame will be the

frame used to determine the vorticity components at the nodes. In other words, the unknowns

of the problem are the components of the vorticity vector at the nodes in the body frame.

The body frame is related to the local frame of an element by a transformation

(direction-cosine) matrix. There is one such matrix for each element. For element m, the

direction-cosine matrix [a]. is defined by

=[a],n J(2.4-5)
k K:

The vector N is perpendicular to the actual surface of the body. The procedure to

approximate this normal is to average the normals of all the elements sharing that node. This

method assumes that there are no sharp edges on the closed bodies.

The vectors of Equation 2.4-3 in their respective coordinate frames are

N Nx/ +NyJ + Nz K (2.4- 7)
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X = i 'lYTyj. (2.4-8)

The body vectors written in the local frame of element m are

=[a]m + =x+ yJ + z k (2.4-9)

n=[a]mN =nx i +nyj +n. (2.4-10),.

Because the surface vorticity at the node is perpendicular to the normal to the surface

L . N = O. (2.4 - 11)

0+ Or in the local frame

n =0. (2.4- 12)

Equation 2.4-12 leads to

nx nyc,, . o z = Z C ox, -n - Y * , ( 2 .4 -1 3 )

The component c,1 was chosen as the dependent component because n, is not zero except

under contrived cases. The vector W- is used in this development because, even though the
i 4_4 components of Q, are related, there is no one equation such as 2.4-13 for this relationship for

S .all orientations of the element in the body reference frame.

The vector P is then

n., n. nnn 2 + n 2

.-
+ [. 

.x 
+ ,Z (2.4-14)

+c2,,, ixnz W]
"","",i + nxWy - n y c x] k

and
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. . cP" -- - nzyy] i + [nzYX] 7j + C7xy), - nYYX' k. (2.4 -15)

4-, Equating the components and determining the local vorticity yields

YX = C n2 CO+ n2 Y (2.4-16)

" = C _ C + nz  (2.4 - 17)
n 2 n 2

[((z- n ) ( + .z )Y

Equating the third component results in a redundant equation. Solving for (w, and c, yields

2 2fny + nz nxny
2 +2 2 X 2 22 y (2.4-18)

n n2 x-cn 2 + 2n 2

.." .c (n x+ .y + n .. c ny + n )

nDy 2 2 2 + 2 2 2 YY (2.4-19)(.y c(n2 + .2 + nz) c(n2 + .y + "z)

The factor c is determined by equating the magnitude of the vorticity at the node and the

magnitude on the triangle at that same node. Putting Equations 2.4-16 and 2.4-17 into Equation

-. 2.4-4 and determining c yields

02 +2 + 2]1/2
* 2 = (2.4-20)

[,:2 + W + .2 + Z)21] /2
X .Y z nz

In general for each element the factor c has a different value at each vertex.

* The specific values of c are not known until the components of surface vorticity at the

nodes are known, but the range of values can be determined. Because Equation 2.4-3 can be

-. .-. written as

cI~l NI = I cos 0 (2.4-21)

Chapter 2 25

0 .. r%

-A--% -



where 8 is the angle between the surface vorticity at the node and the surface vorticity on the

triangle at the same node, and the magnitude of the surface vorticity vector is maintained, the

relation between the direction of the vorticity vector and the factor c is

C = cos 8. (2.4-22)

The angle 8 can have a range of values that depends on the direction of the vorticity vector.

If the vorticity is oriented along the intersection of the elemental and tangential planes, 8 is

4i zero. The angle 8 is greatest if the vorticity vector is in the plane containing the nodal and

elemental normal vectors. Therefore, the maximum value of c is unity and the minimum is the
P%,

cosine of the angle between the element and node normals. The variation of the angle 8 and

the orientation of the vorticity vector is shown in Figure 3. Thus if the elements are coplanar

the factor c can only be unity. Because c is dependent on the vorticity, it is obtained by iter-

ation to maintain the linearity of the equations. The actual procedure for obtaining the

strength of the vorticity at a node is described in detail below.

S2

- - - - - - - - -

09

Figure 3. Limits on the Factor c.

The unknowns are the components of the vorticity vector in the body reference frame

at the nodes; thus the two independent components of Q must be chosen and the relation

between these unknowns and the components of must be developed. For N, different from

zero, the dependent component is chosen to be Qz. Then

0
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NY
QZ fX NZ 'y N(2.4-23)

and the unknowns are chosen to be f~ and Q,. The relationships between the components

at the node and the components on the surface elements are

Nz Nz

wo (a2 1 - a23 -- )O~X + (a22 - a23 - )DY. (2.4 -24)
Y z NZ

* where the al, are the elements of the direction-cosine matrix defined in Equation 2.4-5. For

* N, equal to zero and NY not equal to zero, the dependent component is chosen to be QY, where

fly=QX X(2.4-25)
NY

-. For this condition, the unknowns are chosen to be Q, and Oz. Then

NY

Nx
Wy (a21 - a22 -- )f' + a23QZ- (2.4 -26)

N
IY

For N, and N, both zero, Ox must be zero; therefore, the independent components are

A. ~y and Q., and the relationships are

Cowx alf' + al3f2Z

(fa 22f2Y + a23nZ. (2.4 -27)

2.5 Matrix Equations for Nor-itn lsdBde
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There are two sets of equations to be solved simulta-eously. The first set represents

the no-penetration condition. The second set represents the divergenceless condition. The

no-penetration conditk-i requires the normal component of the relative velocity to vanish at

211 points on the surface. The method used to approximate this condition is to chose a point

on each element where the normal component is set to zero. The point chosen is called the

. control point. The control point used for the entire analysis is the centroid of the nodes of the

triangular element. The no-penetration condition at the control points can be made into a set

*- of linear equations in the unknown strength of the components of the vorticity vector at the

nodes. In general, for closed non-lifting bodies, the velocity at the control point on an element

is the sum of the velocity induced by the surface disturbance and the velocity of the free

stream. Summing the contributions one finds that the no-penetration condition for control

point i is

.,Ali 1XI + ZAj+n, Q j + "V" n= 0(2.5-1)
'.-',J=1 j=1

- '- where the A,, are the velocity components induced by unit vorticity in the body x or y directions

OA
at node j normal to element i at its control point and Q, and QY, are the independent compo-

nents defined by Equations 2.4-23 through 2.4-27. The actual assembly is not difficult. The

influence matrix is created by finding the velocity at a control point due to the six bases, two

d;rections for each node and three nodes for each element. These influence coefficients are

then added to the corresponding influence coefficients for all elements sharing a given node.

Because the rotation is needed to assemble the influence matrix, a factor c must be chosen

,. to start the process. The obvious choice is unity because this is the upper limit and it is the

value when the elements are coplanar.

The matrix equation expressing the no-penetration condition can be written as

[A] {} = {U} (2.5 - 2)
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The divergenceless condition, Equation 2.3-8, can also be written in matrix form in terms of the

same unknowns. This equation is

--]( }) = to). (2.5-3)

The matrix Equations 2.5-2 and 2.5-3 can be solved by a variety of techniques. The present

method treats Equation 2.5-3 as weighted constraints. They are adjoined to Equation 2.5-2, and

a weighting factor w is used. The weighting factor is a diagonal matrix with a constant factor

along the diagonal. The combined equations can be written as

[A]
.S } {2 - = (e), (2.5-4)

0

where (e} is the error. In general the number of equations is greater than the number of un-

knowns and thus (e} is not identically zero. Because of this, the square of the error, (e}Z, is

minimized. Using this principle, one can obtain the solution by solving the normal equation

A [ Iw]{}=. (2.5-5)

Equation 2.5-5 can easily be solved by any standard procedure. But since the matrix

[A] is dependent on the vorticity, because of the presence of c, the problem is solved by it-

eration. That is the initial guess for c is used to formulate [A] and [B] and then the unknowns

0 at the nodes are obtained. Using these values, one can compute a new c, form new

[A] and [-] matrices, and re-solve the problem. This procedure is repeated until there is no

change, within small tolerances, in the unknowns at the nodes from one iteration to the next.

2.6 Results for Non-lifting Closed Bodies

Three test bodies were used to show the accuracy and convergence ( robustness ) of

the method. The three bodies are a sphere, an oblate ellipsoid and a prolate ellipsoid. The

ellipsoids are of thickness ratio 10 to 1. These shapes were chosen because the surface ve-

Chapter 2 29

%6



-4

_: Figure 4. Discretizing the Body

locity is known analytically. Several runs were made with different numbers of elements to

show how the numerical results converge to the analytical solution. The sphere, discretized

into 120 elements, is shown in Figure 4. The other bodies were discretized in a similar man-

ner. Table 1 shows the effect of the weighting w on the surface velocity of a sphere with 120

elements and a radius of one. The quantities presented are the magnitude of the surface

velocity at angles of 0, 30, 60 and 90 degrees from the x axis. As seen there is no significant

difference for the entire range of weights as long as the method converged. The higher

weighting implies the divergence condition are satisfied more closely. There seems to be an

upper bound where the divergence condition swamps the minimization process. This result

suggests the divergence condition could be imposed exactly using a method of substitution

or Lagrange multipliers. These were not implemented because the divergence conditions are

not all independent and the method of weighted constraints is very easy to implement.
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Table 1. Effect of Various Weights on the Divergenceless Condition

Weight V(O) V(30) V(60) V(90)

1.OE - 5 did not converge after 15 iterations

i.E - 4 0.000000 0.781943 1.309356 1.493643

1.OE - 3 0.000000 0.781948 1.309361 1.493649

. ' 1.OE + 0 0.000000 0.781948 1.309361 1.493649

1.OE + 3 0.000000 0.781948 1.309361 1.493649

1.OE + 4 0.000001 0.781955 1.309353 1.493657

1.OE + 5 0.000017 0.782052 1.309532 1.493054

[ •The surface velocities at the nodes are compared to the analytical solution in Figure 5 through

,.. Figure 7for a weight of 1. The examples show good agreement with the analytical solutions.

-" They also show convergence as the number of elements is increased. As shown in

Figure 5, for a sphere the only configuration that does not approximate the analytical solution

-. very closely is the sphere with 48 elements. This configuration is a very coarse mesh. The

convergence is shown in Figure 6 and Figure 7. The convergence is most noticeable near the

regions where the velocity is changing rapidly, that is, near the top of the oblate ellipsoid and

near the front of the prolate ellipsoid. From these figures it is plain the larger meshes do

better in approximating the surfaces then the small meshes.

"
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Figure 5. Surface Velocity on a Sphere
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The velocity field away from the body was also analyzed. The analytical solution for

* a sphere was used to generate the total velocity, at a grid of points. This set of velocities is

shown in Figure 8. For this figure the velocity was artificially set to zero for all points inside

the body. In Figure 9, the same grid points are also used to show the total velocity obtained

from the present method with 120 elements to represent the sphere. The velocities inside the

body for this figure were not set to zero, but as can be seen the total velocity inside the body

is very nearly zero everywhere, as it should be. For the grid shown in Figure 8 and

Figure 9, the maximum difference between the analytical solution and the numerical proce-

dure was 0.087 at the point (x, y,, zP) = (0.25,1.00,0.00). The difference is defined by

I anaiI-" -. (2. - 1)
qe -

where V.h is the velocity of the analytical solution. There is very good agreement between

the predicted and analytical velocity throughout the flow field. For all the numerical results

5- isosceles triangles were used for discretizing, and no attempt was made to analyze the effect

of different element shapes.

,.-'-

0
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2.7 Formulation for Thin Lifting Surfaces

The formulation is extended from closed nonlifting bodies to thin lifting surfaces. This

extension involves including additional boundary conditions and compatibility equations. The

additional boundary conditions are that the Kutta condition must be imposed along the edge

where the wake is attached, the theorems of conservation of circulation apply and there can-

not be a pressure jump across the surface of the wake. The compatibility equations are de-

veloped by requiring consistency between the order of smoothness of the singularity

distributions for both closed bodies and thin surfaces. The complete formulation of the prob-

lem can be written as solving the continuity equation

_e- div V =0 (2.7- 1)

subject to

. (Vb -V)n =0 on S (2.7-2)

-0 on W (2.7-3)
Dt

ACP =0 along the edge where the wake joins the surface (2.7-4)

and

0 V -0 far fromS and W (2.7-5)

where W is the wake surface. Equation 2.7-2 is the no-penetration condition on the surface

- of the body. Equation 2.7-3 is the Theorem of Kelvin and Helmholtz, 2.7-4 is the Kutta condition

and Equation 2.7-5 is the infinity condition. Because there is no wake for nonlifting closed

bodies, the above formulation reduces to that presented in Section 2.2.

The problem formulation points out the two differences between the two types of

bodies. The first is, for thin lifting surfaces there is an edge. The second is that there is a
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wake emanating from that edge. These are important differences and each will be discussed

in detail.

2.8 Edge Formulation and Compatibility Conditions

The surface of the body is represented by a vortex sheet. For there to be nonzero

vorticity along the edge in the direction perpendicular to the edge there must be some

mechanism for either generating or capturing the vortex sheet along the edge. This mech-

anism is a vortex core of variable strength. The circulation around a vortex core is related to

the vortex sheet it adjoins by

dr (2.8-1)
dx =- 28I

where r is the circulation at a point on the core, x is the position along the length of the core

and y is the strength of vortex sheet.

The functional form of the circulation along the edge can be obtained by applying the

concept of spatial conservation of vorticity to an elemental piece along the edge. An

infinitesimal element of the surface vortex sheet along the edge is shown in Figure 10.

For spatial conservation of vorticity

y = yy. (2.8-2)

The component of vorticity perpendicular to the edge, y, , is a linear function on the

triangular element. In Figure 11 the definitions of the local coordinate system and the vortex

distribution along the edge of an element are shown.

0SA%
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* Figure 11. An Edge Core and an Edge Element
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along the edge

• -9, 'y2 - Yyl
Yy Yy d XY +yl (2.8-3)

Integrating equation 2.8-1 results in the circulation of the core being

d(x) y+lx + G (2.8-4)i d 2 yl

where G is a constant of integration. Note that the y, of equation 2.8-4 is in the local coordi-

nate frame of the variable vortex core, which is not necessarily the local coordinate frame of

the adjoining element. Thus, a coordinate transformation may be needed to relate these

variables to the unknown vorticity components at the nodes.

From Equation 2.8-4 it seems that unknowns have been added to the system of

*i equations in the form of constants of integration. In reality, once the constraints on the con-

tinuity of the vortex core along the edge are introduced there are fewer new unknowns than

new equations. Because the vortex sheet is modeled as a set of triangular elements with

linearly varying vorticity, the magnitude of the vorticity is continuous but the first and higher

derivatives are not necessarily continuous where the elements join. To remain consistent, the

-" circulation around the vortex cores should be continuous through the first derivative because

of the relation between the vortex core and the vortex sheet.

* To make the circulation continuous in strength around the body, two adjoining edge

segments must have the same circulation at the juncture. As an illustration, we suppose that

- there are two cores joined at a point, one segment be designated n and the other n + 1. The

circulation around n at the node is

+~= fy ~ +yG,(2.85).... ~~~ 2- y d -

where d is the length of vortex core n (see Figure 11). Equation 2.8-5 can be reduced to
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n = ',2 + yy] I f+ G, (2.8-6)

The circulation around n + 1 at the same node is

rn+1 = Gn+1 .  (2.8-7)

Then for continuous circulation strength

iYy2 + ?y! I + Gn - Gn+ 0. (2.8-8)

There is the same number of these equations as there are edge cores. Therefore, there is

one new equation for each edge node.

* For the circulation around the cores along the edges to be continuous through the first

dr
derivative, - must be continuous. The only possible place the derivative would not be

continuous is where two cores join. To illustrate, we suppose there are two cores, one des-

ignated n and the other n +1, that join at the point x, . The smoothness requirement is

dFn drn+l
d" (2.8 -9),'-dx X0 dx I

or

yy n(xo) - ,+ ,+(xo) (2.8 - 10)

• where -',,,x,) and y,,. 1(x0) is the vorticity perpendicular to the cores at the joining node. These

two vorticity components are in the coordinate frames of the cores n and n +1, respectively.

Equation 2.8-10 is an added relation among the three components of vorticity Q at the joining

nodes. These equations are only included in the system as constraints if adjoining cores are

not collinear. If the cores are collinear Equation 2.8-10 is always satified provided only one

vortex strength and direction is defined on the sheet where the edge cores join.

o
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2.9 Velocity Induced by an Edge Vortex Core

As stated in Section 2.8, whenever there is an edge on a surface, there must be a

variable-strength vortex core. For piecewise linearly varying vortex sheets, the circulation

"""- around the corresponding edge core is quadraticly varying. The model of the body now has

two components, the linearly varying triangular vortex sheets on the surface and the variable

strength vortex cores along the edges. The total disturbance velocity is simply the sum of the

velocities induced by the components. That is

Vis Vd+ V, (2.9-1)

where V, is the disturbance velocity due to the elements and V. is the velocity due to the edge

cores. A general vortex core, its local coordinate fr--a and the definitions of the variables

used to determine the disturbance velocity are shown ir igure 12.

x

Y e

Figure 12. Vortex Core and Local Coordinate Frame

The velocity induced at a point by a variable strength vortex core can be written as

VVi +Vj +±VkA (2.9 -2)
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The velocity induced by the core can be obtained from the general formula

V~~~(r~~~t)S = ulrr~ t) dcurl si (2.9-3)

where Q is the vorticity at point s, r is the point of interest and T is the region of the flowfield

containing vorticity ( this is the same formulation as for a vortex sheet ). The volume element

of the core is the scalar product of a cross sectional surface area, in the direction normal to

the surface, ndS, and an element of length dl along the core. One can show that the disturb-

ance velocity is

,-. 1 -- " ' ) (2.9-4)* V(r,t) =- I~r(x,t) 3

where F is the circulation around the core. Equation 2.9-4 can be further simplified by

changing variables. Then

1 r(xt) sin .
41r J h dOe. (2.9-5)

0'

where 0 is the angle between the vector along the vortex core and the vector from the point

along the core to the point of interest, h, is the perpendicular distance from the axis of the

filament to the point and e is the unit vector in the direction of the induced velocity. This di-

rection is

x (2.9-6)

I xr1

The strength of the vortex core can be written as the general quadratic expression

2
F(x,t) G, - + G2x + G3. (2.9- 7)
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In terms of the constants of the quadratic expression, the integral of Equation 2.9-5 can be

evaluated. The closed-form expression for the induced velocity is
"I,.

e--' {G111 + G2
1
2 + G3 13} (2.9 - 8)

where

/ r.2 1  (1 - cos 02) sin 0,
2 =-'- sin2 n1 (1 -cos 01 ) sin 62

2
+2 cos 201( COS 01- cos 02) + -- r sin 201( sin 01 - sin 02)

S'/2 r(1 - cos(6 1 - 62))

13= COS 1 - COS 2  (2.9-9)

It should be noted that there are numerical difficulties in evaluating the velocity along

Jthe axis of the core. The limits as this region is approached are well behaved except on the

core itself. The complete derivation, these limits and a listing of the subroutine used to de-

termine the velocity induced by a variable-circulation vortex core is presented in Appendix I1.

2.10 Determination of the Pressure and the Kutta Condition

* Now the Kutta condition is developed. We must first determine the pressure coeffi-

--. cient. The pressure coefficient is defined as

.. '.2" ""P - P.o

CP 2 (2.10-1)

2

where P is the pressure at the point of interest, P_ is the pressure a large distance from the

disturbance, p is the density and U is a reference velocity.

Bernoulli's equation for unsteady flow is
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+ T + H(t) (2.10-2)at 2 + Ht

where - I- is the partial derivative of the velocity potential with respect to time for an

inertially fixed point, V is the velocity at the point, P is the pressure, p is the density and H(t)

is a spatially uniform function of time. At a given instant

04 V p 04 _I V2

2 P a o .+-V,+-+. (2.10 -3)

Far from the body the velocity is either constant, typically zero; therefore the velocity potential

• - is not changing with time there and Equation 2.10-3 reduces to

P.p v2-_V 2  a'O
-£ P 2 at (2.10-4)

The pressure coefficient is then

V2 -2 v2  - (2.10-5)P 2 00atR

The entire problem is posed in the body coordinate reference frame. The problem is

the points, where the pressure is needed, are not fixed in an inertial reference frame. In fact,
,I"

these points may not be fixed in the body reference frame. Therefore, Equation 2.10-5 cannot

be used in its current form because of the presence of the last term. To find a more useful

form, we look at a point on the surface. The point is defined by R, which is the position vector

from the origin of some inertially fixed point to the point on the body at a given instant, t. At

some short time later, t + At, the point of interest has moved to a new inertial position,

R + AR. By definition

• ( b 4 (R, t +At) - h(R, t)
lim (2.10-6);': a--t- fi At-0o At
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The problem is that the point on the surface is no longer at R when time is t + At, it is at

R + AR. Using a Taylor series expansion about Rat time t + At, one can write

,b(R + AR, t + At) = k(R, t + At) + V((R, t + At). AR + H.O.T. (2.10-7)-'

where H.O.T. are higher order terms. Equation 2.10-7 can be written as

s(R, t + At)=(R + R, t + At) - VO(R, t + At) A AR + H.O.T. (2.10-8)

* Substituting Equation 2.10-8 into Equation 2.10-6 leads to

* ':'"""- 0 0t ; = ,-.im [ (R" + AR, t t+ At) - O(R'. t) V((R, t + tAt). ARt] (.0-0

atAt At1

where the limit of the H.O.T. is zero. Equation 2.10-9 can be written as

I dR
___' -V4(Rt) - (2.10-10)

atR at'r dt

-I.=,-t

where a-t is the partial derivative of the velocity potential with respect to time for some
dR

point on the surface and d- is the inertial ( absolute ) velocity of the point. The body frame

is used as the reference frame, then one can write the velocity of any point on the surface as

dR r + (2.10-11)
, .. ?dt

V, is the inertial velocity of the origin of the body frame, i, is the angular velocity of the body

frame with respect to the inertial frame, r is the position vector of the point in the body frame

and v is the velocity of this point with respect to the body frame. Because the gradient of the

potential is the absolute velocity of the fluid, Equation 2.10-5 can be written as
5,-

P 2 it +2V (2.10-12)U r
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Introducing the dimensionless variables

-. V *tu
V V and t*= (2.10-13)UL L

L is a reference length and the superscript n denotes dimensionless quantities. Then Equation
"1%

2.10-12 can then be written as

2"v2
c, c= V-V -2- + 2 v (2.10-14)

at rU .'

Now that the pressure coefficient has been found, the Kutta condition can be formu-
lated. The Kutta condition states.

A = 0 (2.10-15)
edge

where edge refers to the edges where wakes join the lifting-surface and AC, is defined as

'"-"P P/- Pu

,CP Cpi - Cp. 2 (2.10-16)

The subscript I denotes the lower surface and u denotes the upper surface. The superscripts

are dropped because all quantities are dimensionless. Equation 2.10-16 can also be written

as

2 2 + +2--- 2. u , (2.10- 17)

Letting -i- I, = -- and I, -- , using the fact that the scalar product of a vector with
ot ot at at

itself is the magnitude squared, and realizing that the upper and lower points are at the same

location on the body, one can further simplify Equation 2.10-17 to

C 2V.V,. 2VP)+Vu(VU-2V") (2.10- 18)
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With the surface singularity, the velocity on both sides of the vortex sheet can be expressed

as the sum of the mean velocity Vm and half the jump in velocity caused by the discontinuity,

AV. The upper and lower surface velocities can be written as

-L I -

v-L A . (2.10-19)

Then

ACp2V AV -2AV -p+ 2 at K(2.10-20)at r

Using a first order finite difference to approximate the partial derivative, one can write

t - I t, r . (2.10-21)• at A t

Imposing the Kutta condition along the edge requires

-'.'' 0 =2 VAV-2AVV +2 (2.10-22)

p.,At

Finally with the previous time step known the unsteady Kutta condition is

(.'. - (0,), 0- - ) (2.10-23)
At t, 1 V A A V At

The jump in surface velocity (AV) is related to the vorticity on the sheet by

AV = x n (2.10-24)

* where y is the vorticity at the point and n is the unit normal vector of the surface. The mean

velocity, V,, is the velocity of the fluid between the upper and lower surface. The velocity V,
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is the absolute velocity of the point on the body. The final term of the Kutta condition and the

pressure equation is the unsteady term, that is the partial derivative of the difference in po-

* - tential. Evaluation of this quantity is the topic of the next section.

To complete the formulation of the pressure coefficient, the change in pressure coef-

ficient needs to be found for closed bodies. The change in pressure from on side of the sur-

face to the other, for closed bodies, is

AC =2 _ 2 2 20 +
at r(2.10 

- 25)
2 2 ~V - +V" -2----I_ +2V, VP

atr

With the velocity on the interior of a closed body zero the mean velocity is one half the jump

in velocity and thus the velocity on the surface is twice the mean velocity. Using these, one

can write the change in pressure on the surface of a closed body as

ACp2VMAV-2AV Vp + 2- (2.10-26)
r
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2.11 Evaluation of the Potential on the Surface

There are two regions that need to be discussed when evaluating the potential on the

surface of a body. First there is the problem of getting onto the body. Second there is the

problem of moving from one point to another when the potential at the first point is known.

There are two types of bodies investigated. They are closed nonlifting bodies and lift-

ing surfaces, For closed bodies assuming there is a path from a point far from the body (

where the disturbance velocity is nearly zero ) to a point on the body on which the potential

is always defined the potential on the surface can be found. The velocity potential is defined

as

grado = V (2.11 -1)

or

.b 0- o.= f ds. (2.11 -2)
00

Letting oo being far from the body and b being the point on the surface. The integral of

Equation 2.11-2 can be numerically evaluated at a given time step. The change in the potential

at the point on the body, from one time to the next is

b bl
.k A f V(t ds -J V (t-At) ds. (2.11 -3)

00 00

The partial derivative required for the pressure calculations can then be approximated by the

* finite difference

Sb f t(t)d V(t-At) d (2.11 -4)
at r- At At o
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We note that the potential far from the body does not have to be known to find the pressure

since it is constant with time. That is, the potential far from the body can be changed arbitrarily

by a constant without affecting the pressure on the body. The potential is evaluated at a point

on the body by starting the line integral at a point far from the body and ending on the surface

of the body. The potential at the starting point is assumed to be zero. We also use the same

starting point far from the body for successive time steps.

The problem of thin lifting surfaces is different because the pressure coefficient is

defined in terms of the change in potential from the upper to the lower surface.

Vds. (2.11 -5)

In other words the difference in the potential across the thin surface at any point is defined
as the line integral from the lower surface to the upper surface along any path on which the

potential is defined. That is, the path cannot go through the surface or the wake. A typical path

for the integral is shown in Figure 13.

*4,1'.

• :'-':Figure 13. Typical Path for Evaluating the Difference In Potential

.-.'."The difference in potential from the lower to the upper surface around a vortex core is simply

': .- the circulation around the core at the point where the path encircles the core. Another point

-." is that the difference in the potential can only be evaluated by using the local edge circulation

:':;:"if the wake is not emanating from this edge core. If the wake is generated at the point along
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the core, the difference in potential is not simply from one side of the core to the other be-

cause the potential does not exist on the wake. Therefore, to use the local circulation strength,

the core must be along an edge that does not generate a wake. These cores are called non-

convecting. Assuming there is a nonconvecting core somewhere on the edge of the surface,

one can choose a path such that a point on this core is crossed and the rest of the surface

potentials can be found by skimming along the lower surface to that point, then returning to

the starting point along the upper surface.

It remains to determine the sign of the difference of the potential. Before the sign can

be determined the upper and lower surfaces need to be identified. The identification is done

by examining the definitions already employed. By previous definition

AV= x (2.11 -6)

Vj= Vr7 2 -

2 AV. (2.11 -7)

In the local coordinates of the triangular element

- =Yx1 +y) (2.11 -8)
U".

and
I

n =k. (2.11 -9)

From these definitions it is obvious that positive vorticity in the x direction produces a negative

*l velocity on the upper surface and a positive velocity on the lower surface. This means the

lower surface is the side facing the negative local z direction and the upper surface is the side
'.

facing the positive z direction. The names upper and lower are only appropriate in a local

sense. If the local z direction is downward ( which is the standard orientation for aircraft ), the

lower surface is physically above the upper surface.
pr-
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The sign is determined by the scalar product of the velocity induced by the edge core

,,.' and the direction of the path from the lower to the upper surface. The upper and lower sur-

faces have been identified but the path has not. There is actually only one possible path be-

cause the velocity potential must be defined at all points on the path. A typical edge core and

adjoining triangular surface element is presented in Figure 14.

'.>

Ze Ye
xC

Xe
.Path

Figure 14. Evaluating the Potential on an Edge

The circulation F is defined as positive in the x direction around the core. The differ-

ence in the potential from upper to lower, for Figure 14, is negative because the path is in the

- . opposite direction of the induced velocity. For any combination of edge cores and adjoining

,. -J elements the difference in potential is written as

!:i: u --@! = + F.(2.11 - 10)

Assuming the body is either closed or thin with at least one nonconvecting core along

"p the edge, one must calculate the potential needed to calculate the pressure coefficient at one

0" point on the body within a constant value. The problem now turns to evaluating the potential

at every point on the surface when its value is known at some point.

The two types of bodies must be investigated separately. For closed bodies the po-

- tential on the outside surface is needed, letting a represent a point on the body where the

potential is to be found, one can use the definition of the velocity potential to write
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" ( a V" •ds" + 40(2.11 - 11)

Assuming all the local element normal vectors are outward pointing and knowing the velocity

on the interior is zero, the mean velocity is

1= . (2.11 -12)
2

It follows that the velocity on the surface is

"-"-V =AV =y (2.11 - 13)

where y is the surface velocity. The potential at any point on the surface is then

, 4'a = AV ds + 0b,  (2.11 -14)

For thin lifting surfaces the difference in potential from the upper to the lower surface

is needed to determine the change in pressure coefficient. The difference in potential is de-

fined as

*;.:;d (f - kI4=J' dS-fVI. ds + 0) (2.11 - 15)

or

,.d.. +t a(k a (2.11 - 16)

Which is
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'"'}r:" r fL.. ., ,r a ~ 3,) 1 t' b

a.'
'""- ( u-- AV"- d + (u -(2.11 - 17)

As can be seen the quantity needed to determine the pressure coefficient for both types of

bodies are actually the same expression. The integral expressions of Equations 2.11-14 and

2.11-17 can be expressed in terms of the local vorticity at the corners of a general triangular

element as shown in Figure 15.

y3
(bc)

S"Y 2..:-,.

(oo) Vrx (0,0) ^xV
Figure 15. Triangular Element with Vorticity

Assuming the potertial, for closed, or the difference in potential, for thin surfaces, is

known at the vertex (0,0). The integral of the jump in velocity can be found at all other points

on the triangle. Since the potential is independent of the path, the path chosen to get to the

- general point (x.y) is along y=0 until the desired x is reached and then holding x constant until

the desired y is reached.

The jump in velocity is defined as

AV- x n. (2.11 - 18)
I

Along the x axis ds = i then

* p (XO) f (x,O)
- .. ,.Vds =J -y dx. (2.11 - 19)

Chapter 2 56
0v. "

"..- . -'..-. ,-.. .- -.............-...-...-.....-..-.......-.........-...-..... •.,.-......-.......-...-....................-.....-.................."......



\.%-

0

The vorticity along the x axis is

Yy Yyi + (Yy2 -Yyl) - (2.11 -20)

Equation 2.11-19 is then

r ( ,0)X 2

A0)V" ds yylx + (yy2 - yyl) X (2.11 -21)

In the y direction, ds =j. The integral is

,I.

*(xy) f (X-0) -(xy)

XV ds AV ds + -YX dy. (2.11 -22)
(0,0) (0,0) (0)

On a triangular element

Yx =YxI + (Yx2 - a+ [ ac (X2 -Yxl)]Y. (2.11-23)

.1 Therefore,

. - 'x,Y)A x2  XYx ). ds = ,x + (y2 - yy) X YXY - (Yx2 - Yxi) a

0- [ YX (YX2 -X1)] Y2 (2.11 -24)

S.----l 7 l

•~X c":" ac ( 22 '

- . Equation 2.11-24 is valid for any point on a given triangle. Therefore, once one point on the

* mesh is known all the potentials of the triangle containing that point are known. These can in
.. 5,,

S. turn be used as starting points for evaluating the potential at the adjoining elements. In this

way the potential needed to determine the pressure can be found for any point on the body.

Two special cases of Equat!on 2.11-24 bear eva;uating. These are the vertices in terms of the

known vertex These are
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AV -O) ds = (Vy_ -y2) 2 (2.11 -25)
-. (0,0)

and

(a) -. c(a - b) cb 

JV d s =x i 2a 2 a x 3

"A.(0,0) (2.11- 26)

, + Yy (b - -a ) + Y.y2 2a-

.. To check the accuracy of the equations developed for determining the velocity poten-

tial on the body, the potential was determined analytically and numerically using a sphere with

120 elements. The potential far from the body was chosen such that the velocity potential at

the front stagnation point is zero. The two methods are shown in Figure 16, as can be seen

.1 "the potential compares very favorably.

0

0 30 60 90 120 150 180

Angular Position

Figure 16. Comparison of Velocity Potentials on a Sphere
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2.12 Aerodynamic Forces and Moments

In general the torce can be written as

F ==Fi +Fyj +Fzk (2.12-1)

The force is the result of the pressure on a surface and of a vortex core in the moving fluid.
d,

The force due to a pressure distribution on a surface is given as

ff AP n dA (2.12-2)
S

where F is the force on the body, S is the surface of the body, AP is the difference in pressure

from one side of the surface to the other and n is the local normal to the surface.

.For a continuous vortex sheet the pressure distribution is continuous. The integral of

Equation 2.12-2 is evaluated numerically. To simplify, the numerical integration scheme, we

assume the pressure difference varies linearly on an element. This is not an unrealistic as-

sumption since the vorticity on an element is linear and therefore if the velocity is constant the

pressure distribution is also linear. A more accurate method of integration could be used to

improve the accuracy but since only one point on the element is used for the no penetration

condition a linear assumption seemed appropriate. Assuming the pressure difference is linear

.-. -on an element Equation 2.12-2, for element i, reduces to

A,=AP nA (2.12-3)

where c, is the centroid of the element. The total force due to the pressure difference is simply

the sum of the forces on each element

F =7AP I nA (2.12-4)
- .I=1

In terms of the pressure difference coefficient
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2 pu2ZAcI ' ;,A, (2.12-5)
1=1

where Equation 2.10-20 and Equation 2,10-26 define the change in pressure coefficient for the

two types of bodies.

This is not the only force on the body. The thin surfaces also have nonconvecting edge

cores with circulation. The force due to these cores is

6F = pVR(x) x F(x) dx (2.12- 6)

where 6F is the force caused by a small segment of circulation, VR is the relative velocity, r

is the circulation and p is the density. To facilitate the evaluation of the force it is assumed

that the relative velocity does not change appreciably over the length of the core. The force

due to the circulation around an edge core is

!d
F =pVR x F(x) dx (2.12-7)

0

or

F = p VR x i raved (2.12-8)

where F., is the average circulation, d is the length of the core and i is a unit vector in the

direction of the core. The relative velocity, VR , is the velocity of the fluid. This velocity was

determined by evaluating the velocity at the point along the core where the circulation was the

average value. The total force on a surface with n elements and m nonconvecting cores is

m n

Ftt=ZpvR I ravet di + APn A, (2.12-9)
/=1 /=1"C'

The force coefficient is defined as
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,f=Cfi +Cfj +c f-k Fto,2 (2.12-10)
2S

where S is the total surface area of the wing.

The moment is defined as

-=r xF. (2.12-11)

Again assuming the pressure difference is linearly varying on an element the moment calcu-

lations can be simplified. The total momer,' is the resultant of the moment caused by the

pressure force being lumped at the centroid of each element, the moment due to the forces

".of each of the elements acting at the centroid and the moment of the nonconvecting cores.

The moment caused by the pressure acting at the centroid is

/c=x AP Ai (2.12- 12)

.4,.1,.

A

where r, is the vector from the point where the moment is to be calculated to the centroid of

element i. The moment caused by the pressure on the element about the centroid is defined

as

MP ffr x AP, n, dA, (2.12-13)

* .- For a general triangular element ( Figure 1) using the linear assumption of the pressure dis-

a +b cEqain21-3cnbinertdtribution, and that the centroid is at the point ( E 2 3n t e

The pressure distribution in general is the linear function

AP APO +API X+AP2 Y- (2.12-14)

--. -The moment is then
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• ecrc b-a y+a a +b
f, + - x kAP dxdy. (2.12-15)

The components of the moment are

M xi =-2- [2AP(b,c) - AP(0,0) - AP(a,O)]

Mpy= Lia + b) AP(0,0) - (2a - b) AP(a,O) - (2b - a) AP(b,c)] (2.12 - 16)

. where AP(x,y) is the pressure difference at the point on the triangle (x,y)

The moment due to a nonconvecting core is

' 

5.'.

" Jr x (pVR(x) x F(x)) dx (2.12-17)

Which, under the assumptions used to arrive at the force of a nonconvecting core, reduces to

Mni = rave x (pvRi x rave,) di (2.12 - 18)

where r.. is the position vector from the point where the moment is to be found to the point
on the vortex core where the circulation is the average value.

The total moment is then

M10t = ZC) + EMP i+ ZMint. (2.12 -19)I, .%I=1 
1---1 t=1

* The dimensionless moment is defined as

Cm= Cm, i + Cmj +Cmk. (2.12-20)

The aerodynamic moment coefficients are defined as

Chapter 2 62

- --



"- .. C m X - M tot "

..'..

.. PU2Sb

Cm MY Mtti

Cm = M 0t" k (2.12-21)

2

where S is the surface area, b is the span and E is the mean aerodynamic chord. These de-

finitions will be used whenever moment data are presented. A flow chart of the force and

moment calculations is shown in Figure 17.

0

'e P"-'.'
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I Enter Routine
I

Evaluate Velocity Potential
At a Starting Node

Equation 2.11-2 or 2.11-10

Evaluate Velocity Potential
At Remaining Nodes and Centroids

j- Equations 2.11-24 to 2.11-26

I-Calculate Pressure at Centroid
I of the Elements

Equations 2.10-20 or 2.10-26

Sum Forces and Moments due to

Pressure at Centroids
Equations 2.12-5 and 2.12-12

";Add Forces and Moments due to
Nonconvecting Edge Cores

Equations 2.12-8 and 2.12-18

Calculate the Pressure
at the Nodes of the Mesh

Equations 2.10-20 or 2.10-26

Add Moment due to Linear
Approximation

Equation 2.12-16

Nondimensionalize
Forces and Moments

Equations 2.12-10 and 2.12-21

* Return

Figure 17. Flow Chart of the Force and Moment Calculations
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2.13 The Formation of the Wake

The wake is a region of concentrated vorticity where the viscous effects have been

neglected. Under the assumptions discussed in Chapter I the wake is considered a vortex

sheet emanating from the edges of the lifting-surface. This vortex sheet must satisfy Equation

2.7-3 ( conservation of circulation ) and Equation 2.7-5 ( infinity condition ). Since the wake is

a vortex sheet it must also satisfy Equation 2.2-10 ( divergenceless condition ). As stated the

method used for forming the wake is the same procedure employed by the general unsteady

vortex-lattice methods. The reason for this choice is that the wake is progressively formed and

can roll up as tightly as needed to simulate the actual wake surface. Before proceeding into

the details of the method used to form the wake, the approximations of the method will be

explained.

[ •One means of discussing, in detail, the development of the wake is to examine a wing

starting impulsively. Before the motion there is no disturbance. At the instant the motion starts

there is vorticity formed on the surface and a starting vortex core, with circulation, is devel-

oped along the edge, though not enough time has elapsed to allow this circulation to move

into the fluid. As time progresses this circulation is swept downstream ( what will be referred

to as parallel to the flow ) and the wake vortex sheet develops from the starting core to the

edge of the surface. This vortex sheet satisfies all the equations mentioned earlier. As the

starting vortex core and vortex sheet move, the flow field around the wing is altered. Thus the

surface vorticity changes causing the wake to change continuously. Finally there is no change

in the surface vorticity or the wake and a steady state is reached. As the strength of the sheet

I "changes in the direction of the flow there is a corresponding change in the strength in the

other direction so that the divergenceless condition is satisfied. This other direction is referred

to as perpendicular to the flow. Therefore, before the steady state is reached the vorticity in

the wake is in both directions.

Modeling this development requires a discrete formation of the wake. Actually the

discrete formulation is easier to understand because the formation process can be frozen and

examined at successive time steps. Again an impulsively started wing is examined. Before the

motion starts there is no disturbance or wake. At the instant motion starts vorticity is formed
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on the surface and the edge cores have circulation. The model of the surface, as developed

in Sections 2.2 and 2.8, dictates the circulation of each edge core is quadraticly varying along

the length of the core. This edge core is then swept a finite distance downstream. This is

where the discretized model varies from the continuous. Since the variable strength core has

moved there is a vortex sheet formed from the core to the edge of the surface. This sheet has

linearly varying vorticity in the direction of the flow but no vorticity perpendicular to the flow.

The strength of the sheet is exactly compatible with the with the vorticity on the edge of the

surface since both originated from the same variable vortex core. This is the end of the first

discrete time step. The surface developed vorticity and an edge core. This core was moved

a finite distance and a vortex sheet was formed from the starting core to the surface edge that

is compatible to both.

The problem with the discrete model is, as the starting vortex moved that finite dis-

tance, the starting vortex was changing the flow field around the surface. Therefore, by the

time it got to its final position there was a new surface vorticity. This means the wake vortex

sheet from the starting core to the surface is no longer compatible with the surface edge.

There is a discontinuity. To make the two surfaces compatible again there must be another

vortex core formed at the edge of the surface. The strength of this edge core is exactly the

-negative of the strength of the starting core added to the strength of the core needed to gen-

* erate the surface vorticity assuming there is no wake.

At the start of the second time step a new vortex distribution is formed on the surface

* because the wake has caused some disturbance. The edge cores are again formed as in the

* "." first time step ( no wake sheet entering the surface ), and the negative of the starting vortex

is placed on the edge to capture the wake sheet. The total edge strength is correct to account

for the discontinuity of the two vortex sheets. The new wake, consisting of the starting vortex

cores, the new edge cores and the sheet between them is moved a finite distance changing

strength according to the conservation of circulation. The vortex sheet from the second edge

core to the surface is formed. This is the end of the second time step. The same procedure

could be used for all successive time steps.
;2
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In looking back at the development, the procedure outlined has actually approximated

the vorticity perpendicular to the flow by a series of discrete vortex cores. To remain consist-

ent and to simplify the conditions the wake sheet must satisfy, the vorticity of the wake sheet

parallel to the flow is also approximated by a vortex core. For this approximation the strength

of the edge vortex core swept into the wake must be replaced with constant strength cores,

otherwise there would be a vortex sheet formed. The core circulation chosen is the average

value of the variable vortex core. The conservation of circulation is imposed by using the

same average circulation to approximate the vorticity connecting the ends of the cores and

holding this circulation constant as the wake convects. The present method uses two succes-

sive approximations, first the vorticity perpendicular to the flow is lumped into discrete vari-

able strength vortex cores and then the vorticity parallel to the flow is lumped into constant

strength cores and the variable cores are averaged. In this way the procedure reduces to the

general unsteady vortex-lattice method.

The method used can now be examined in detail. Again examining an impulsively

started wing. First there is no disturbance. At the moment the motion starts vorticity is formed

on the surface and the edge cores have circulation. This condition is shown in Figure 18 a.

To make the figure clearer only the vortex cores along the trailing edge are convected and the

collocated edge cores are shown slightly offset. The average circulation on each edge is cal-

, culated. This circulation is swept into the fluid. A closed four sided ring of circulation is then

formed connecting the starting vortex core to the surface, and new vortex core is formed along

the edge because of the changed caused by the presence of the wake. This condition is shown

I in Figure 18 b. The wake is then convected without changing the strength of the circulation

around the rings formed by the mesh of the wake. The condition after one more time step is

shown in Figure 18 c. The bookkeeping is extremely simple in that only the positions of the

corners and the circulatin. around the closed loops need to be recorded to completely de-I

scribe the wake.

-
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Figure 18, Development of the Wake Lattice
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The average circulation r... can easily be found knowing the strength of the edge

core. With

X
2

r(x) =G 1 - + G2x + G3  (2.13-1)

PS f d 2

JG, - + G2x + G3 dx

rave d - + G2  + G3  (2.13-2)

where

," " Y2 -- Yyl

G - (2.13-3)
d

and

G2 = Yy (2.13 -4)

The strength of the wake has been determined but the position has not. The placement of the

wake is determined by the no pressure jump condition. To satisfy this condition the wake is

convected at the local particle velocity. The position for the next time step is determined from

the first order finite difference formula

r(t + At) = r(t) + V (t)At. (2.13 - 5)

Where r(t + At) is the new position vector, r(t) is the old position vector and V(t) is the local

particle velocity. This approximation was chosen because it does not require iteration. The

local particle velocity is the sum of the velocity induced by the disturbance of the bound

vorticity (the wing ) the disturbance velocity of the wake and the velocity of the lifting surface,

V(t) = VBound+ VWake + VLS. (2.13 - 6)

0 The subroutines used to calculate this total velocity are presented in Appendix Ill.
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To complete the formulation of the wake the velocity induced by the collection of

constant strength vortex cores can be determined by adding the velocity induced by each

core. The velocity induced by a constant strength core is determined by the well known Biot-

Savart Law. This velocity is a subset of the velocity of a variable strength vortex. The velocity

is

e 4 ave( cos 1 - cos 02)- (2.13 -7)

The approximation of using discrete vortex segments can be enhanced at the cost of

more complex bookkeeping, by employing the experience obtained from using the vortex-

lattice technique. The results of this experience says that rings with sides of nearly equal

length give the best results. As the wake convects it deforms. Sometimes the rings get so

deformed that the length of one side is significantly different from the other sides. One choice

to correct this discrepancy is to redistribute the circulation in the spanwise direction so that

the sides remain nearly equal in length. The size of the chordwise segments is dictated by

the step size chosen. The redistribution of the circulation is an adaptive grid technique and is

referred to as splitting the wake. The method employed is not the only alternative. The re-

distribution chosen uses a linear interpolation between neighboring vortex cores. The as-

sumptions used in determining a unique algorithm are that splitting only occurs in the

spanwise direction, once a wake segment is split it never reforms and the wake is split from

the starting location to the end of the wake.

One way to examine the method used to split the wake is to use an example.

Figure 19 a shows a general section of the wake at some time. The G,, is the circulation

around the c!osed loop formed by the vortex cores. Figure 19 b shows the same wake at the

next time step. The dashed vortex segment has lengthened past some specified amount and

therefore splitting will be employed to return the stretched rings to rings with more nearly

equal sides The split wake mesh is shown in Figure 19 c.
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Figure 19. Splitting the Wake Lattice

The relations between the circulations of Figure 19 a and Figure 19 c are

G'21 G11  G' 22 = G12  G' 23 = G1 3

• 2 21G' 31 =G 21  G' 32 - G2 1 + - G22  G'33 -3 G22 
+  G23  G'34 =G 23

333 3 3

and

G'4 1 =G 31  G' 42 -G 3 1 + -G 32  G =43 G32 
+ -- G33  G'4= G3 3 . (2.13 - 8)

in this way the circulation is conserved, the circulation has been redistributed linearly and he

-ortex rings remain nearly equal in !ength.

Finally the question needs to be addressed as to how well the wake of successive

approximations reducing the wake from a vortex sheet to a set of constant strength cores ),
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represents the actual surface. The first approximation, where the vorticity in the direction

perpendicular to the flow is lumped into discrete variable strength vortex cores, is the result

of using discrete time steps. This approximation does not have to be made but the procedure

to establish a complete vortex sheet does not appear to be straight forward. The second ap-

proximation can be investigated readily since the velocity induced by a vortex sheet has been

determined. The test case used to compare the two methods is a single row of the wake with

four elements. The panel arrangement and the vortex distribution on the panels are shown in

Figure 20.

"Y IF, F2 13 F4

Fl F2

Chapte 2 7

• ' ______ I___ I_

- .,

o- 1 2 3 4

'='- Figure 20. Test Configuration ot A Vortex Sheet

* Sp~ecifying [-,0 = - F5 the equivalent arrangement of constant strength vortex cores can be

found using Equation 2.13-3 and 2.13-4. This arrangement is shown in Figure 21.
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Figure 21. Equivalent Constant-Strength Vortex Core Arrangement

These two arrangements are compared by finding the total induced velocity at a grid

of points around the two surfaces. The velocity distributions are shown in Figure 22 a for the

vortex sheet and Figure 22 b for the vortex cores. Outside of a region around the discrete

cores the velocity fields are nearly identical. Within the region there are differences as would

be expected because one is an approximation of the other. The region where the difference

is noticeable is inside a radius of approximately 0.25 around each discrete core where the

distance between the cores is unity. The flow chart for the convection of the wake is pre-

sented in Figure 23.
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b) Velocity Around a Discrete Sheet
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Figure 22. Velocity Field of the Test Wake Configuration
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- I
Convect the Nodes to New

I "Position
Equations 2.13-5
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Add the Necessary

Elements
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Equations 2.13-8
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into the Wake

Equations 2.13-2

Return

Figure 23. Flow Chart for Convecting the Wake

- 2.14 General Matrix Equation and Method of Solution

* The complete unsteady aerodynamic model has been developed. The numerical pro-

cedure for solving the problem can now be discussed. The matrix equations developed for

- closed bodies include the no-penetration conditions at the control points on the surface

* [A] }=( u} (2.14-1)

For thin surfaces with edge separation, the velocity induced at the control points on the sur-

face is also influenced by the edge cores, which in turn are dependent on the surface vorticity,

and the velocity induced by the wake. The no-penetration condition can then be written as
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[A C D]{ } {U- W (2.14-2)

where C,, is the normal component of the velocity induced by node j caused by an edge core

on control point i, Dk is the normal velocity induced by the constants of integration on control

point i, Gk is the constant core strength of edge segment k, U, is the normal component of the

freestream velocity and W, is the velocity induced by the wake normal to the surface at control

point i.

The divergenceless condition for the surface in terms of all the unknowns of the for-

mulation is

[B 0 = {0} (2.14-3)

The compatibility conditions imposed on the edge cores, Equations 2.8-8 and 2.8-10, are linear

in the unknown surface vorticity strength and the constant circulation of the edge cores and

therefore they can be written as

[E :i :i = 0. (2.14-4)
J: 0 G

The final matrix equation is the Kutta condition, Equation 2.10-23. As seen, the difference in

potential is a linear function of the problem variables. The only nonlinear term of equation

2 10-23 would be the second term on the left-hand side. For uncambered surfaces the mean

velocity that is dependent on the surface vorticity is perpendicular to the surface. This means

4 that for uncambered surfaces Equation 2.10-23 is linear in the unknowns of the problem. For

cambered surfaces Equation 2.10-23 is nonlinear and thus an iteration at each time step is

required. But for cambered surfaces the no-penetration conditions are also nonlinear, due to

the factor c. Both these iterations can be accomplished simultaneously. The iteration method
4

is initialized at the start of each time step by using values from the last time step for c and the
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surface vorticity. One then uses these values to calculate the mean velocity at the point the

%Wt Kutta condition is imposed. The problem is solved, the new vorticity distribution is found and

the c factors are recalculated. The surface vorticity is then calculated again. This procedure

continues until there is no change in the c factors and the surface vorticity.

It should be noted that for the first time step the Kutta condition cannot be imposed

since the left-hand side of Equation 2.10-23 is not defined. The method used to circumvent this

problem is simply to ignore the Kutta condition and not to calculate the loads on the first time

. step. The starting procedure for the iteration is the same as for closed bodies; that is, the

initial guess of all the c factors is unity.

The linear Kutta equation can then be written as

[K L] = {P}. (2.14-5)

where P, is the potential from the previous time step.

The placement of the Kutta condition is established next. The Kutta condition is im-

posed only at the nodes of the surface along the trailing edge. The condition is only imposed

. at these nodes because this makes the relation of Equation 2.10-23 involving AV only contain

the vorticity at one node instead of being a linear combination of two node strengths. Im-

posing the Kutta condition along the side edges of the surface would require the pressure

.i- jump to go to zero along that edge. Experimental data, however, show a large pressure gra-

dient along the sides of wings. To capture this large gradient requires a large number of ele-

ments. Instead of requiring a large number of eiements, the Kutta condition was not imposed

* along the sides of the wing.

Using the same procedure as used for closed bodies, ( that is, the no-penetration

condition is augmented by weighted constraints ), one can write the entire matrix equation

* as
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A+C D U-W
J.

WlB 0 0

w2E w2F 0 (2.14-6)
% wJ 0 0

Vw4K w4L W4P

The weighting matrices are diagonal matrices with a constant weight for all nonzero elements.

From the formulation for closed bodies the weighting of the divergenceless conditions, w, had

no impact on the problem for a wide range of values. The weightings of the edge compatibility

conditions, w2 and w,, need to be large because these conditions should be imposed exactly

to be consistent with the formulation on the surface. The weighting of the Kutta condition at

the nodes along the trailing edge, w4, has not yet been investigated. The weighting of the di-

vergence condition and the Kutta condition will be investigated for thin surfaces in Section 2.15

S. Letting

A+C D

wJB 0

[S]= w2E w2F (2.14-7)

w3J 0

w4K w4L

* •and

U-w

0

: (T)= 0 (2.14-8)

0

W4P

the entire problem can then be formulated as
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[s]{} T). (2.14-9)

NG
S.1

This set of linear algebraic equations can be solved by several techniques. Again the chosen

method of solution was to minimize the sum of the squares of the errors ( see Section 2.5 for

details ). This solution is the solution of the following linear equation

[S]TES]{ [S]T ) (2.14-10)

This matrix equation can be solved by any standard routine.

Solving Equation 2.14-10 is just one step in the solution of the general unsteady prob-

lem. The overall method used to solve the unsteady problem is best understood by using a

flow chart as shown in Figure 24. Initially, the only way to start the program is impulsively

because the wake position and strength are not known. As mentioned above, for the first time

step the Kutta condition is not used because the derivative of the velocity potential is not de-

fined for an impulsive start. With the understanding that these equations are neglected for the

- first time step, the right-hand side of equation 2.14-9 is formed. On the first time step, the

matrix T contains the component of the freestream velocity perpendicular to the surface at the

-'. control points augmented with a zero matrix. For subsequent time steps this matrix will in-

Sclude the velocity induced by the wake and the matrix will also contain the difference in the

velocity potential from the previous time step at the nodes where the Kutta condition is ap-

. plied. The influence matrix, the left hand side of Equation 2.14-9 is then formed. This matrix

will change every time step for cambered surfaces and surfaces that are deforming. In fact,

the influence matrix will have to be updated more then once every time step because of the

* nonlinearity of the equations. Equation 2.14-10 is then formed and solved. The vorticity on the

surface and the circulation along the edge is now known. If an iteration is required, the influ-

.- ence matrix is redetermined and Equation 2.14-10 is recalculated. The procedure is repeated

until some convergence criterion is met. The forces and moments can then be calculated. With

the vorticity and circulation known, the amount of circulation being convected into the wake

Chapter 2 79

.
.

................... .,.................... &A -



is also known. The wake is then moved at the local particle velocity and thereby forms the

lattice of the wake. Equation 2.14-9 is recalculated with the new information and the process

is repeated until the final time is reached.
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Figure 24. Flow Chart for the Aerodynamic Model
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2.15 Determination of the Weighting Matrix and Other Parameters

The wake formation and surface vorticity distribution is dependent on the weight cho-

sen for the constraints. In order to remain consistent between the surface and edge, the edge

compatibility conditions should be weighted heavily. A weighting factor of 500 is chosen. To

minimize the dependence on the other choices of the weights the method is run until the an-

swer is insensitive for a range of weights. As an example a unit-aspect-ratio rectangular wing

with 64 elements at 10 degrees angle of attack is examined. Since the closed bodies showed

little variation due to a large range of weights on the divergenceless conditions, this weighting

was chosen to be 10 and the weight on the Kutta condition was examined first. The steady

state values for several weights is presented in Table 2.

Table 2. The Effects of Various Weights of the Kutta Condition

Weight Cfz Cmy

1.OE - 3 -0.34525 -0.09301

41.OE -2 -0.34524 -0.09300

1.0E - 1 -0.34436 -0.09230

1.OE +0 -0.33814 -0.08739

1 0E+1 -0.33771 -0.08702

1.0E + 2 -033770 -0.08701

1 0E+3 -0.33770 -0.08701

1l As shown, the solution is insensitive for two ranges of weight, both low and high. The lighter

weighting effectively ignores the Kutta condition while the heavier weighting imposes this

condition more exactly. Since the Kutta condition is needed a weighting of 50 was chosen for

all subsequent results. The weighting for the divergenceless condition is now considered. The

results are presented in Table 3.

2
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Table 3. The Effects of Various Weights of the Divergenceless Condition

Weight Cfz Cmyle

1.0E - 1 No steady state condition was reached

1.OE + 0 -0.33643 -0.08655

i .OE + 1 -0.33770 -0.08701
.1.E + 2 -0.33772 -0.08702

1.OE + 3 -0.33772 -0.08702

Again there is a large range of weights for which the steady state forces and moments are

nearly independent of the weight. A weighting of 50 is also chosen for the divergenceless

,. conditions.

In arriving at the answers presented in Tables 2 and 3 other parameters had to be

chosen. First is the distance inside which the vortex sheet, edge cores and wake cores do not

induce a velocity. This is called the cutoff distance. As the wake forms the local particle ve-

locity is needed. The velocity of the vortex discontinueties need to be calculated at the edge

and the wake nodes. The actual velocity at these points would be infinite which is physically

impossible. To eliminate this difficulty, as disc ussed in Appendix II, a distance is chosen inside

of which the induced velocity was set to zero. This distance was chosen to be 0.00001, where

the length of the edge cores are unity. This choice effectively eliminates the influence of the

singularity on itself while the effect on the rest of the flow field is retained.

The second parameter is the length of the time step. As mentioned the dimensionless

length of the convecting edge cores is unity, the dimensionless time step was chosen to be

unity so that the wake mesh rings had sides of nearly equal length.

The final parameter was how much of the wake should be retained. The result pre-

sented in Tables 2 and 3 used a wake length equal to five chord lcngths. This parameter is

used to save computer time. As the wake moves down stream its influence on the surface

decreases ( the infinity condition ). To find where the wake no longer has influence on the
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surface several runs were made retaining different lengths of the wake. The results of these

test are shown in Table 4.

Table 4. Variation due to Length of the Wake

Length Cf CM
- Y__ _ _

" 2 chords -0.33466 -0.08591

3 chords -0.33645 -0.08658

4 chords -0.33728 -0.08687

5 chords -0.33772 -0.08702

6 chords -0.33796 -0.08710

S.As shown there is little difference for wake lengths greater than about four chord lengths, for

-. a unit-aspect-ratio rectangular wing.

2.16 Results for Thin Lifting Surfaces

Two wings where analyzed in detail. The first is a unit-aspect-ratio rectangular wing

The second is a unit-aspect-ratio delta wing. Both wings are uncambered, but as pointed out

throughout this work the method is valid for wings with camber. The method was tested for

convergence as the number of elements is increased. The steady state results are compared

with experimental data and the vortex-lattice method for a range of angles of attacks. The

delta wing is also compared with the experimental results of Hummel [19791

The wings are discretized as shown in Figure 25. The two meshes where chosen

because the elements are nearly equilateral. The rectangular wing is shown with 64 elements

. and the delta wing is shown with 49 elements.

* The evolution of the normdl force coefficient for the rectangular wing started

impulsively at 10 degrees angle of attack is shown in Figure 26. Figure 27 presents the evo-

lution of the comparable moment coefficient about the leading edge. Table 5 lists steady state

coefficeints of the unit-aspect-ratio rectangular wing at 10 and 20 degrees angle of attack.

Figure 28 and Figure 29 present a comparison of the present method with experimental data
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Figure 25. Discretizing the Wings

of Berlotserkovskii [1966] and Lamar [1974] and also with the vortex-lattice method over a

0, range of angles of attack for 64 elements. The steady state pressure distributions using 256

elements at angles of attack of 10 and 20 degrees are shown in Figure 30 and Figure 31, re-

spectively. The steady state wake mesh for 10 degrees angle of attack and 256 elements is

shown in Figure 32.

Table 5. Convergence of a Unit-Aspect-Ratio Rectangular Wing

-A=10° --20°

Number of Cfz Cm Cfz Cm
Elements 'I.e. Cf em

64 -0.3372 -0.0870 -0.8472 -0.2250

100 -0.3477 -0.0906 -0.8504 -0.2272

144 -0.3531 -0.0927 -0.8507 -0.2281

196 -0.3568 -0.0938 -0.8509 -0.2291

256 -0.3592 -0.0944 -0.8510 -0.2298

. I
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Figure 26. Normal Force Coefficient an Number of Elements Is Increased
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Figure 27. Pitch Moment Coefficient as Number of Elements is Increased
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The unit-aspect-ratio delta wing is shown in Figure 33 through Figure 40. Figure 33

and Figure 34 and present the convergence of the normal force coefficient and moment coef-

ficient, calculated about the one quarter mean aerodynamic chord, as the number of elements

is increased, for the wing at 20.5 degrees angle of attack. Figure 35 and Figure 36 show the

comparison of normal force and moment coefficients to experimental results over a range of

angles of attack. The steady state listing of force and moment coefficients ,for 20.5 degrees

angle of attack is presented in Table 6. Figure 37 shows the steady state pressure distribution

for the 169 element wing at four different chord positions. The steady state wake shape is

shown in Figure 38 at six positions downstream of the wing. The steady state wake mesh is

shown in Figure 39 and Figure 40. These last three figures are for a wing with 361 elements

at 20.5 degrees angle of attack.

There are some difficulties with a delta wing compared with a rectangular wing. First

the number of cores that should be convected off the wing is not as apparent. The number

chosen depended on the size of the wing mesh. For a wing with less then 81 elements two

cores on each side of the centerline were not convected. For wings with more than 80 ele-

ments three cores on each side of the centerline were not convected. The wake mesh shown

in Figure 38, Figure 39 and Figure 40 has three nonconvecting cores on each side of the

centerline of the wing. This particular choice gives a much more even wake mesh. Second

the wake filaments tried to penetrate the wing, for larger wing meshes, as the wake rolled up

over the wing. Because there is no mechanism for reattaching the wake to the wing, the wake

-' was forced to remain a fixed distance above the wing. This distance also depended on the

. size of the wing mesh. The distance is chosen to be .03 chords. This choice provides a more

consistent development of the normal force and pitching moment coefficient from an impulsive

N -start.
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Table 6. Convergence of a Unit-Aspect-Ratio Delta Wing

= 20.50

Number Cf Cm
Elements

25 -0.7454 -0.1276

36 -0.7507 -0.1190

49 -0.7422 -0.1091

64 -0.7494 -0.1071

81 -0.7479 -0.1048

100 -0.7545 -0.1135

121 -0.7503 -0.1098

169 -0.7559 -0.1115
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2.17 Conclusions for the Aerodynamic Model

This method represents an attractive procedure for predicting aerodynamic features

of closed nonlifting bodies and thin wings. The method uses the concept of a continuous sheet

of vorticity to represent the surface and a progressively developing lattice for the wake. The

'method presented provides advantages compared to both the vortex-lattice methods and

other vortex panel methods.

The obvious advantage over the vortex-lattice method is the smooth pressure distrib-

ution on the surface. The method also removes the question of where the wing is located, the

lattice method adjusts the position of the wing a certain amount so that the aerodynamic data

is accurate. The present method has the wing in the same location as the mesh. The lattice

method also uses an offset for the starting location of the wake mesh for a delta wing and no

offset for a rectangular wing. This raises the question of the appropriate offset for wings of new

planform. Because of the above questions the lattice method has been accused of providing

accurate predictions only once the predictions are known. The method presented here does

not have this problem because both the rectangular wing and delta wing were analyzed using

the same method.

This method also has advantages to the other vortex panel methods. The main ad-

vantage is that the wake is progressively formed. Thus general insteady motion can be ana-

lyzed. Another advantage is that the other models using vortex panels in the wake have a

mechanism to capture the wake into a discrete core of vorticity. The present method does not

require a capturing vortex core because the wake is already a set of discrete cores. The last,

and perhaps the most subtle, advantage is this method employs the Kutta condition by

Bernoulli's equation for unsteady motion.
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Chapter III

Dynamic Model

3.1 Introduction

In Chapter II, a complete unsteady aerodynamic model was presented. This model is

capable of predicting the aerodynamic forces and moments for bodies executing arbitrary

maneuvers. As mentioned in Chapter 1, the dynamic simulation will be restricted to surfaces

* with constant speed. That is, the model will be used to simulate wind tunnel experiments. The

focus is on two types of motions that have been investigated in wind tunnels. These motions

are forced and free oscillation tests. Both of these motions can be examined by coupling the

aerodynamic model with equations of motion.

In this chapter will present the definition of the coordinate frames, the method of sol-

ution of the equations of motion, the procedure used in coupling the equations of motion with

the aerodynamic model, the results for forced pitching oscillation tests, the development of the

governing equations of motion for three degrees of freedom ( in angular orientation ) and

finally the free oscillation tests for one degree of freedom, "wing rock" are presented.

3.2 Reference Coordinate Frames

Two coordinate systems are used to develop the equations of motion. One is an

inertial reference frame, and the other is a moving reference frame attached to the body called

the body-fixed frame. In general, the motion of a body has six degrees of freedom. These

degrees are the three components of the position vector of the origin of the body-fixed refer-

ence frame and a set of three Euler angles. With the restriction that the speed is held constant,
0

the degrees of freedom reduce to the three Euler angles. The body-fixed reference frame is

oriented, as shown in Figure 41, with the positive x axis through the nose, the positive y axis

through the right ( starboard ) wing tip, and the positive z axis downward. The three Euler

0 angles chosen to relate the angular orientation of the body-fixed frame to the inertial frame
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frame is the 3-2-1 set. That is, the following sequence moves the wing from the inertial frame

to a given orientation:

4-v 1) A yaw-like rotation around the original z axis through an azimuth angle ,, followed by

.2) a pitch-like rotation around the new position of the y axis through an elevation angle 9,

followed by

3) a roll-like rotation around the new position of the x axis through a bank angle 4.

k

Figure 41. Coordinate Reference Frames

S

The unit vectors of the body-fixed frame (i ,j, k) are related to those of the inertial

frame (IJ, K) as follows:

"4 c 4 (32-1)

where
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cos O cos cos 0 sin i -sin 0

"4-

"V.

] sin sin 0 cos sin 0 sin 6 sin
[C]I =osin cos 0 (3.2-2)

- cos 0 sin + cos 0 cos

cos 0 sin 0 cos cos 0 sin 6 sin

cos k c cos 6

L sin0 sin , -sin 0 cos

The components of the angular velocity of the wing written in the body-fixed reference frame

are

W coxi + oyj + coz k. (3.2-3)

These components are related to the time derivatives of the Euler angles as follows,

COY [B] (3.2-4)

-Wz

where

•1 0 -sin 0

[B] = 0 cos sin cos ]. (3.2-5)

0 -sin cos cos

3.3 Equations of Motion and Method of Solution

In this presentation the forced oscillations of interest are simple harmonic motions.

0- In general. the equations of motion can be written as
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H 2  (3.3-1)
%.%/.H3

where the Hi are independent of the aerodynamic moments for forced tests and include these

moment for free tests. Therefore, coupling the aerodynamic model with the motion equations

requires first coupling a numerical integration scheme with the aerodynamic model. The in-

tegration technique chosen is Hamming's fourth-order predictor-corrector method as pre-

sented by Garnahan et al1969]. This method was chosen over a Runge-Kutta technique

because the aerodynamic model of Chapter I1 uses a constant step size.

The predictor-corrector technique requires the differential equations to be written in

the form:

dX F,(x1, x , t) for i =1...,n. (3.3-2)iI dt ..

" , Therefore, Equation 3.3-1 is written as

,)1 X2 F1
H1  F2

X3  X4 F3

H2 F4  (3.3-3)X] ' 4 0H2 4

X6 F5

H3  F6

This general procedure requires full knowledge of four previous time steps to predict the state

" at the next time. Assuming the states and the right hand side of Equation 3.3-3 are known at

four previous time steps and designating them

=."". XI,1 , XI,2 , X,,3 , XI,4 ,

F, , F,2 , F,,3  and F,,4,
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the procedure follows the flow chart of Figure 42, where the equations referred to in the chart

are

XP 5 = X,' + 4 (2F,4 - Fj,3 +2Fj, 2)' (3.3 - 5)
t,5 31  3+s 2),

x "i,5 =,+9 E,,4, (3.3- 6)

X+I 1  [9X,4 -X + 3t (Fl.,5 + 2F, 4 - F,,3)], (3.3 - 7),,s5 = [ 9 , - Xi,2 + , 4 3)]

where k is the iteration number

E, 5 - - (X21
9 - Xis) (3.3 - 8)

and

X i,5  - , - Ej,. (3.3 - 9)

The method presented in Figure 42. is based on the assumption that the solution is

known at the four previous time steps, which is true only if three time steps have already been

computed. For the first three steps, a starting procedure must be employed. The starting pro-

"- cedure chosen is based on a simple Taylor-series expansion. Using the initial conditions,

* designated by the subscript one, one can obtain the state at the first time step, designated by

the subscript two, as follows:

X,2 = X,,1 + At F,.1 . (3.3 - 10)

The right-hand side of Equation 3.3-3 (F,,) can then be computed by using the new state Xi.2.

A. This information can be used to find the state at the second time step from the following:

1 2zAt

X, 3 (4X,,2 - XI, + - (2F,2 - F '
1 ). (3.3- 11)
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0

F - Set k0O
I

Compute the Predicted State

XP5 Using Equation 3.3-5

Compute the Modified State
,.' X 1

X,,5 Using Equation 3.3-6

'1. .
Calculate New Value of

Fk+1 Xk+1

. i,5 Using Xj,5

Increase counter

,P" k=k+lI

Compute the New Modified State

. ,s Using Equation 3.3-7

No Did the Solution Converge?

X,,k 51 < tolerance?

Yes 4
Compute the Error

E,,5 Using Equation 3.3-8

Perform Final Correction

X, 5 Using Equation 3.3-9

Update

4%, x~= X,]+, and Fj= F,,+ where j = 1,2,3,4

* Return

Figure 42. General Flow Chart of Predictor-Corrector Algorithm

This state can then be used to compute F,,,. The state at the third time step is
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X1,4 - (18Xi, 3 - 9Xt,2 + 2Xj,1 ) + 6At (3Fi,3 - 3F, 2 + F,,1). (3.3 - 12)

Finally, F,4 can be found by using X,4. All the information needed for the general predictor-

corrector method is now available, except E,, which is set to zero before the general proce-

dure is started. The flow chart of the entire numerical integration procedure is shown in

Figure 43.

[ Initial Conditions I

'"~Se I °J-
"----' If j < 3

- " then

% [Set j =j +

Compute X,4
% Equations 3.3-10,11,12

Compute Fj

Set Error Ej =0

F-Else

General Predictor
€."."Corrector

~End if

,...No Is the Time

at the Final Time

Yes

* 1Stop

Figure 43. Entire Integration Flow Chart

The algorithm described in the flow charts of Figure 42 and Figure 43 was validated

by solving the equation
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, = -x (3.3-13)

:,

with the initial conditions x(0)= 1 and X(0) =0. The results obtained from the predictor-

corrector algorithm are compared with the analytical solution in Figure 44 for step sizes of

0.5 and 0.1. The comparison shows this method does very well for the smaller step but not as

well for the larger step.

too
.. 1 .5- 1

0.5

00L .: "'x0oio- °:

0 2 4 8 8 10

Figure 44. Validation of Numerical-Integration Scheme

So far, the integration technique has been discussed in general. That is, the technique

has not been applied to the aerodynamic model. Three areas must be discussed in order to

couple the differential-equation solver and the aerodynamic model. These areas are the de-

trmination of the position and angular velocity of the wing, the solution of the aerodynamic

problem and the convection of the wake. The position and angular velocity of the wing are

. determined after the prediction and first modification has occurred, inside the predictor-

corrector iteration loop. This placement allows the aerodynamic model to react to the current

conditions as solved by the integration technique. The solution of the aerodynamic problem,

which includes calculating the forces and moments, follows this step. The convection of the

wake is placed after the fgl correction, or outside the predictor corrector iteration loop.
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The actual flow for coupling the equations of motion and the aerodynamic model is

shown below, where

tp.

Subroutine TAYLOR is the starting procedure Equations 3.3-10,11,12,

Subroutine PRAMOD finds the predicted and modified states Equations 3.3-5,6,

Subroutine OMEGAS computes the angular velocity Equation 3.2-4,

Subroutine CMATRX computes the direction cosine matrix Equation 3.2-2,

Subroutine SETRHS sets the right hand side of Equation 2.14-9,

Subroutine EINFLU computes the influence matrix of Equation 2.14-9,

Subroutine DIVERG computes the constraint matrix of Equation 2.14-9,

Subroutine REDOMA establishes the matrix Equation 2.14-10,

Subroutine DGEF and DGES solve the linear equations,

Subroutine FACTOR computes the c of Equation 2.4-20 the remaining components of the

vorticity vector and checks for convergence of these,

Subroutine GAVERA finds the average circulations to be convected Equation 2.13-2,

Subroutine FORMOM computes the forces and moments as shown in Figure 17,

Subroutine IMWRIT prints out information during time step,

Subroutine RHSMOT computes the components of F,,

Subroutine YFITER computes the corrected state Equation 3.3-7,

Subroutine ERRCOR computes the error and the final state for this iteration Equation 3.3-8,9,

Subroutine UPDATE moves the state and right hand sides of the motion back one in index

Subroutine CONVEC convects the wake without splitting Equation 2.13-5,

and Subroutine CONVEI convects the wake with splitting Equations 2.13-5,8.
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C THE INITIALIZATION OF THE PROGRAM TAKES PLACE HERE

C NSTIME -- STARTING NUMBER FOR THIS RUN

C NTIME --- ENDING NUMBER FOR THIS RUN

C NSTMOT -- THE NUMBER WHEN MOTION STARTS

C

C THE MASTER LOOP

DO 10 I=NSTIME,NTIME

NCURTM=I

NMOTIO=I-NSTMOT

IF(NMOTIO.LT.O)THEN

C BEFORE THE MOTION HAS STARTED

CALL OMEGAS

CALL CMATRX

CALL SETRHS

20 CONTINUE

CALL EINFLU

CALL DIVERG

CALL REDOMA

C THIS IS A CANNED LINEAR EQUATION SOLVER

CALL DGEF(B,MUN,NUMB,IPVT)

CALL DGES(B,MUN,NUMBIPVT,X)

C FACTOR RETURNS IERROR=O FOR CONVERGED IERROR=l OTHERWISE

CALL FACTOR

CALL GAVERA

IF(IERROR.NE.O)GOTO 20

ELSE

IF(NMOTIO.LT.3)THEN

CALL TAYLOR

NMOTIO=NMOIi1+1

0 ELSE

CALL PRAMOD

NMOTIO=NMOTIO+1

30 CONTINUE

CALL OMEGAS

CALL CMATRX
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CALL SETRHS

40 CONTINUE

CALL EINFLU

CALL DIVERG

CALL REDOMA

CALL DGEF(B,MUNNUMB,IPVT)

CALL DGES(B,MUN,NUMB,IPVT,X)

c FACTOR RETURNS IERROR=O FOR CONVERGED IERROR=1 OTHERWISE

CALL FACTOR

CALL GAVERA
IF(IERROR.NE.O)GOTO 40

CALL FORMOM

I-t CALL RHSMOT

C YFITER RETURNS IERROR=O FOR CONVERGED IERROR=1 OTHERWISE

* CALL YFITER

IF(IERROR.NE.O)GOTO 30

CALL ERRCOR

END IF

CALL OMEGAS

CALL CMATRX

CALL CTLMOV

CALL SETRHS

50 CONTINUE

CALL EINFLU

CALL DIVERG

CALL REDOMA

CALL DGEF(BMUN,NUMB,IPVT)

CALL DGES(B,MUNNUMBIPVTX)

C FACTOR RETURNS IERROR=O FOR CONVERGED IERROR=1 OTHERWISE

CALL FACTOR

CALL GAVERA

IF(IERROR.NE.O)GOTO 50

END IF

0 CALL FORMOM

CALL RHSMOT

S-.
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CALL IMWRIT

* ~-TIME=TIME+DTIME

CALL UPDATE

IF(TIME. GT. CHORD)THEN

CALL CONVE1

-: ELSE

CALL CONVEC

END IF

C SETTING THE WAKE STEPS

NWPT S=NWPTS+1

C LIMITING THE NUMBER OF WAKEPOINTS TO MAXWK

IF(NWPTS.GE.MAXWK)NWPTS=MAXWK

10 CONTINUE

Notice in this code there are three areas, before the motion starts, during the starting proce-

S. dure and during the general predictor-corrector scheme. The first two sections require only

one iterative loop, which is the iteration for non planar surfaces as discussed in Chapter I1.

The last section requires two iteration loops one for non planar effects and one for the

predictor-corrector algorithm. The discussion of the placement of the aerodynamic subrou-

. tines relative to the solution of the motion equations, applies only during the last section.

3.4 Forced Oscillation Tests

The coupling of the aerodynamic model of Chapter II and the numerical integration

* scheme has been developed in Section 3.3. The forced oscillation tests can now be performed.

The first test is a simple pitching motion of a high-aspect-ratio rectangular wing about its

midchord. This wing was chosen to examine the effects of pitching a two-dimensional flat

plate. The high-aspect-ratio wing has approximately the properties of a two-dimensional flat

plate near the mid-span of the wing. For this test, the rectangular wing has an aspect ratio of
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five and is represented with 320 elements. The wing is held fixed at 12 degrees angle of pitch

until a steady-state is reached ( 20 chords ). The steady-state normal-force coefficient is -0.783

and the pitching-moment coefficient about the leading edge is -0.201. The wing is then pitched

by solving the differential equation

= =- k (0 - 10o) (3.4-1)

where k = (7r/10). This equation gives a period of twenty time steps. The dimensionless time

step is one quarter of a chord. The evolution of the pitching motion, normal-force coefficient,

and pitch-moment coefficient ( calculated about the leading edge ) is presented in Figure 45.

The time period shown is from shortly before the motion starts until after three full cycles of

the motion have been completed.

The pitching motion, as shown, is not exactly the solution of Equation 3.4-1. This dis-

crepancy is caused by the relatively large step size. Because the motion is not described by

Equation 3.4-1, the forces and moments presented also do not apply to that equation. It should

be noted, that the motion presented in Figure 45 has nearly the correct period. From

Figure 45, the normal force leads the motion by about 30 degrees, and the pitching moment

leads the motion by about 60 degrees.

The position of the wake is shown at several time steps during the last cycle of the

motion, in Figure 46. The effect of the motion can clearly be seen in this set of figures. The

pitching motion results in the wave that propagates downstream of the wing. The numerical

references on the plot of pitch angle as a function of time of Figure 46 correspond to the

numbering on the right-hand side of the plots of the wake mesh.

The centerline pressure distributions for various times during the last cycle of the

motion are presented in Figure 47. Again, the numerical references in the plot of pitch posi-

• tion correspond to the numbers near the pressure-distribution plots. The steady-state

centerline pressure is compared with the analytical solution in the figure designated 1. The

h:. pressure determined by the present method shows favorable agreement with the analytical

solution. The differences are due to the relative coarseness of the wing mesh and the wing

not being truly two dimensional. As can be seen by examining the remaining pressure dis-
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tributions, significant differences exist in the centerline loading for the same angular orien-

tation, but different angular rates.
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The second set of pitching oscillation tests was performed to show the influence of the

placement of the axis of rotation. For this test, a unit-aspect-ratio rectangular wing repres-

ented with 64 elements is oscillated using the same differential equation as for the first test.

The axis of rotation is about three different chord positions: the leading edge, the midchord

and the trailing edge. The pitching motion and the evolution of the normal-force coefficient are

presented in Figure 48. Differences in the phase-angle between the motion and the force for

the three axes exist, which can readily be explained by examining the motion. The angle of

attack is initially 12 degrees for each. The rotation of the wing about the leading edge causes

the trailing edge of the wing initially moves with the freestream; therefore, a lower apparent

angle of attack is seen by the entire wing. This apparent angle of attack results in a significant

loss of lift at the start of the motion. For rotation about the trailing edge, the initial effect is to

raise the apparent angle of attack seen by the entire wing. Therefore, the loss of lift due to

the overall pitching motion is delayed. The rotation about the midchord produces a higher

apparent angle of attack on the front half of the wing but a lower angle of attack on the rear

half. Thus, this curve should lie between the two extremes. These three situations are clearly

visible in Figure 48.

•'

0

0
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In order to analyze the results, the forces and moments were examined to determine

their characteristics. The method of analysis is to calculate a least-square curve fit to the data

to determine the average amplitude (A,,.), the relative amplitude (A) and phase shift (4)) from

the motion. The assumed functional form for both the normal-force coefficient and pitch-

4moment coefficient is

x = Aave + A cos(ot + 4>) (3.4-2)

where A ,, A and 4) are determined by the least-square curve fit and W is assumed to be the

same as the pitching motion predicted by the predictor corrector algorithm. The period of the

predicted motion was nearly the same as the period of the analytical solution. Thus, the as-

sumption on c is valid. The curve fit is compared to the normal-force coefficient during the last

_ ,cycle of motion for pitching about the leading edge. These two curves are presented in

Figure 49. The agreement is remarkable. Thus, simple harmonic pitching motion indeed re-

suits in a normal-force coefficient that is very nearly simple harmonic

% '

% 8- 0.40

0

-."-0.20

20 21 22 23 24 25
Tke(chorcls)

* Figure 49. Least Square Curve Fit

Chapter 3 120

0
pU

-%"

#. ,.,. .. . . . . • " "t '"'" " ' '"" "' " ' '''' " -



6

%

The phase ieau angles, relative amplitude and average amplitude are presented in

Table 7 for the three axes of rotation of the unit-aspect-ratio wing and for the high-aspect-ratio

wing of the first test. Table 7 was constructed by using the least-square curve fit described

'9 above applied to the last full cycle of the motion.

Table 7. Dependence of the Force on the Position of the Axis of Rotation

.1

Normal Force Coefficient ( C,)

Aspect Ratio Axis of Rot. 4 A Ao

1 O.Oc 47.13 -0.0979 -0.3383

1 0.5c 21.62 -0.0772 -0.3381

1 1.0c -10.90 -0.0782 -0.3385
5 0.5c 27.57 -0.1075 -0.6480

The pitching motion and the evolution of the pitching moment are presented in

Figure 50. The pitch-moment coefficient is calculated about the leading edge of the wing. The

phase lead angles, the relative amplitude and the average amplitude are presented in

Table 8 for the three axes of rotation.

Table 8. Dependence of the Moment on the Position of the Axis of Rotation

Pitch Moment Coefficient ( Cmy )

Aspect Ratio Axis of Rot. 4 A I A,

1 O.Oc 66.46 -0.0329 -0.0871

1 0.5c 53.14 -0.0262 -0.0870

1 1.0c 32.88 -0.0217 -0.0869

5 0.5c 58.26 -0.0371 -0.1654

The results show virtually no difference in the average amplitude for both the force

and moment. The relative amplitude of the force is smallest for pitching about the midchord,

whereas the moment is smallest for pitching about the trailing edge. A substantial phase shift
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for both the force and the moment for all three rotations exist. Also, for the three axes of ro-

tation, the moment always leads the force.

7.5 10.0 V-5 1.0 17.5 20.0 22.5 2&.0

* ~-0.161

o edtEo

TA'~hr

-. TLeaf Edge
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Figure 50. Pitch Moment as a Function of Time for Various Axes of Rotation
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The pitching motion and contour plots of the pressure coefficient for the unit-aspect-

ratio wing rotating about the midchord are shown in Figure 51 and Figure 52. The numerical

references in the plot of the pitch position correspond to the numbers on top of the pressure

contour plots. The pressure contour plots labeled two of Figure 51 is the same as the pres-

sure contour plot labeled six of Figure 52. Thus, the cyclic motion produces cyclic pressure

distributions.
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The last set of forced oscillation tests are for three delta wings. The results for pitch-

moment coefficient are compared with the experimental results of Woodgate and Pugh

[1963]. The three wings are of aspect ratio 0.654, 1.000, and 1.484. Woodgate and Pugh only

present experimental data for wings of aspect ratio 0.654 and 1.484. The other wing is included

for comparison. All three wings are approximated with 49 elements. The pitching motion for

all tests is about the one quarter mean aerodynamic chord. The amplitude of the motion is

one degree. The mean angle of attack is either 10 or 15 degrees. The reduced frequencies are

- either 0.50 or 1.01. The reduced frequency is defined by

= - c (3.4-3)
V.0

where v is the reduced frequency, a) is the frequency, 3 is the mean aerodynamic chord and

V_ is the reference velocity. The pitching motion and normal-force coefficient for all three

wings are represented in Figure 53 for a pitching frequency of 1.01 at a mean angle of attack

of 15 degrees. The comparable pitching-moment coefficient, calculated about the one quarter

mean aerodynamic chord, is shown in Figure 54. The mean aerodynamic chord is defined

as

ib1 2 
2

c (y) dy (3.4-4)
S -b/2

where 3 is the mean aerodynamic chord, S is the wing area, b is the wing span, and c(y) is

the chord length at a given span location. The results for a frequency of 0.50 at a mean angle

of attack of 15 degrees for the normal-force coefficient and the pitch moment coefficient are

shown in Figure 55 and Figure 56, respectively. One result of this test is that the method has

difficulty predicting the loads for the larger-aspect-ratio wing.
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The computed normal-force coefficients for the three wings were approximated by fit-

ting the force during the last cycle of motion with the function of Equation 3.4-2. The results

of this analysis are presented in Table 9.

Thble 9, Dependence of the Norm'al Force on Aspect Ratio and Frequency

Normal-Force Coefficient ( C,)

Pitch Aspect Freq.
Angle Ratio v A, AA,

10 0.654 0.50 23.696 -0.0253 -0.2417

10 0.654 1.01 42.970 -0.0339 -0.2420

10 1.000 0.50 13.681 -0.0347 -0.3344

10 1.000 1.01 35.091 -0.0357 -0.3346

10 1.484 0.50 6.141 -0.0470 -0.4106

10 1.484 1.01 24.262 -0.0401 -0.4112

15 0.654 0.50 12.051 -0.0337 -0.3905

15 0.654 1.01 28.536 -0.0367 -0.3907

15 1.000 0.50 7.725 -00421 -0.5248

15 1.000 1.01 27.591 -0.0404 -0.5251

15 1.484 0.50 7.552 -0.0470 -0.6857

15 1.484 1.01 32.282 -0.0462 -0.6858

The results of these tests show little effect caused by changing the aspect ratio. The results

also show a significant change in the phase angle due to change in both frequency and aspect

ratio.

The pitch-moment coefficient for the three wings are analyzed in the same manner

as the normal force coefficient. The results of this analysis are presented in Table 10, along

with the results of the experiment conducted by Woodgate and Pugh [1963]. Woodgate and

4 Pugh oscillated in pitch two thin delta wings of aspect ratio 1.484 and 0.654 about two chord

positions, 1.0 E and 1.5 E. The pitch oscillations were at reduced frequencies ranging from 0.25

to 1.01. They measured the pitch moment with a sting balance. No correction was made to

remove the moment required to produce the pitch motion.
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Table 10. Moment Dependence on Aspect Ratio and Frequency

Pitch Moment Coefficient ( Cm)

Presen t Method W,.,odgale and Pugh

Pitch Aspect Freq.
Angle Ratio v A 4) A

10 0.654 0.50 -0.0054 38.568 -0.0054 50.18

10 0.654 1.01 -0.0087 63.199 -0.0102 66.72

10 1.000 0.50 -0.0058 20.876 --

10 1.000 1.01 -0.0067 67.454 ....

10 1.484 0.50 -0.0080 0.475 -0.0058 55.93

10 1.484 1.01 -0.0033 49.904 -0.0109 69.52

15 0.654 0.50 -0.0055 27.303 -0.0068 50.94

15 0.654 1.01 -0.0080 62.189 -0.0108 69.91

15 1.000 0.50 -0.0054 17.581 --

15 1.000 1.01 -0.0069 73.504

15 1.484 0.50 -0.0045 22.641 -00052 49.93

15 1.484 1.01 -0.0076 87.682 -0.0104 78.24

. The comparison shows the present method predicts a larger influence of the fre-

quency on the phase shift than shown in the experiments. This difference may be caused by

the experimental results including the inertial acceleration required to move the model.

3.5 Free Dynamic Equations

The forced oscillation tests have been completed. The next step in the development

is to simulate the response of the wing to the forces and moments experienced during the free

oscillation test. Before this step can be completed, the equations of motion have to be devel-

oped,

The assumptions are that the body is rigid and rotates about point c as shown in

Figure 57
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Figure 57. Coordinate Frames of Rotating Body

For such a body, the general vector set of governing equations are of the form

la M E=[iII + x([x Z;) (3.5- 1)

where M, is the external moment vector about point c, wv is the angular velocity vector, and

-. ~.,[1.] is the inertia matrix about point c. For the special choice of principle axes

1.'x 0 0

Then the inr'ividual differential equations of motion are

M
1 xxwx6) + (IZZ - /yy)W,9y (3.5 - 3)

\

+Y (y'-. + Izz)w 'w (3.5 -4)
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and

M z = /zczS + (Iyy - I)(yCOx, (3.5 - 5)

The kinematic relations are

,o. $ - sin o (3.5- 6)

COY cos + ,cos 8 sin (3.5-7)

and

oz-- sin + cos0cos4. (3.5-8)

- Differentiating the kinematic relations with respect to time results in

.x=k-#sin 0 - 00 cos 0 (3.5-9)

(y = cos -O sin# ,0 + cos 0 sin (3 5 -  10)

- #0 sin 0 sin 4 + i cos 0 cos

and

6 wz= - sin -6)cosq + cos 0 cos
(3.5 - 11)

"- , sin 0 cos + 0k cos 0 sin

* Equations 3.5-3 through 3.5-11 represent the second-order differential equations that predict

the motion of the body responding to external moments.

The external moments about point c can be written as

M =A MD +MG (3.5 - 12)
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where MA is the aerodynamic moment, M. is the damping moment caused by any friction in

the ball joint used to support the model and MG is the moment caused by the center of gravity

not being at the point of rotation. The aerodynamic moment in general is

MA =MA,, + MAd + MA k (3.5-13)

where

1 2

MAy PUSC Cm (3.5-14)

and

M.z PU 2 SbCm.

The aerodynamic moment coefficients are calculated by the method described in Chapter Il.

The damping moment is
..

MD Mo. i +MOj +MOk (3.5-15)

where

- MD, - sxx = - x(- sin 0)

MD : - Y= - Y(O cos 4 + ,' cos 0 sin k) (3.5- 16)

M = - = - z( - sin C + cos 0 cos 4)

and u is the damping coefficient.

The moment due to gravity is
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% k

MG = mg(d x K)

where m is the mass, g is the acceleration due to gravity. d is the distance from point c to the

center of gravity, and K is the unit vector in the inertial Z direction. The inertial Z direction

written in the body frame is

K =-sin 0 i + cos 0 sin 4j + cos 0 cos 0 k.

The distance to the center of gravity is, in general,

d =d~i +dyj +dk.

Therefore, the moment due to gravity is

MG= mg(dy cos 0 cos k - d, cos 0 sin 4)i

+ mg(- dz sin 0 + d, cos 0 sin))j (3.5-17)

+ mg(- dy sin 0 + d, cos 0 cos 4) k.

Next the equations of motion are nondimensionalized. The dimensionless time is

t tL

* where t is time in seconds, U is a reference velocity and L is a reference length. Equations

.- -- 3.5-12 to 3.5-19 are then substituted into equations 3.5-3 to 3.5-5. This substitution and the

change to dimensionless variables result in the equations

1 0 -sin 0 iF
SOs Cos 0 sin 0 R (3.5 -18)

0-sin cos0cosJ Rz

where
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1 L (Iz - ly)z°Y + 8 Cos 8, (3.5-19)
My Lxx U2 xx

SMyY U 2 ( /)xwz + 0 sin 0 + 1 sin 6 sin c - cos Coslyy lyyco

and

Mz L_2  (lyy - lxx)
Rz- /zz U2  Izz _YX COS + sin 0 cos + cos 0 sin

Equation 3.5-18 can be used to solve for the second derivative of the Euler angles, as long as

- # + 30'. The final equation is

1- [ tan 0 sin tan 0 cos 4 Rx

= 0 cos4 -sin Ry (3.5-20)

0 secOsin k sec cos _J RZ

The dimensionless differential equations, Equations 3.5-19 and 3.5-20, can now be written in

the form needed by the predictor-corrector technique by simply converting the second order

equations into two first order equations.

3.6 One-Dimensional Wing Rock

The equations of motion have been determined in Section 3.5. These equations can

now be used in conjunction with the predictor-corrector method and the aerodynamic model,

as presented in Section 3.4, to simulate a body in a wind tunnel that is free to rotate on a ball

and socket. This complete coupling of the dynamic and aerodynamic models will be used to

investigate one-dimensional wing rock of a slender delta wing. This simulation will be com-

pared with the experimental results of Levin and Katz [1982]. Their experiment considered

a thin delta wing of aspect ratio 0.707 free to roll about the mid-span.
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The test equipment employed by Levin and Katz allowed the wing to roll only. Because

the body is only free to roll, the equations of Section 3.5 can be significantly reduced. For

one-dimensional roll motion the dimensionless equations reduce to

2  (3.6-1)

xx U2

., and

I0
.4-'

where

M I=1 pU'S U (3.6-2)
2 L ,

Wing rock will be simulated at two flight conditions. In order to compare the results

with the experiment, the actual physical properties for the model must be used. The conditions

used in the simulation are shown in Table 11. The damping coefficient ju., and the Moment

of Inertia I,, of Table 11 are assumed values since the physical values are not presented by

"- Levin and Katz.

Table 11. Quantities Used in the Simulation of Wing Rock

Quantity Magnitude Units

0 p 1.2000 kg/m 3

U 15.000 m/s

S 0.0321 m 2

b 0.1500 m

0.5 x 10-'

,I,, 1.3 x 10-' kg-m
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The numerical experiment is carried out for a delta wing discretized with 25 elements or five

rows of elements, which makes the reference length 0.0857 m. For this simulation the

dimensionless equations are

0 .16 3CM - 0.00224 (3.6 - 3)

and

[=b = 0. (3.6-4)

Wing rock is investigated by holding the wing at an initial unsymmetric orientation until

a steady state is reached. The wing is then released and allowed to roll freely about the mid

span. The first set of initial conditions are

0(0) 50 and 0(0) = 0. (3.6 - 5)

The pitch angle is 22.5 degrees. The results of this test are presented in Figure 58 through

Figure 61. In Figure 58, the evolution of the roll position as a function of time after the wing

is released is presented. In Figure 59 the evolution of the roll-moment coefficient as a function

j of time after the wing is released is presented. In Figure 60 and Figure 61 the evolution of the

normal-force coefficient and the pitch-moment coefficient, respectively, as functions of time

are shown. Clearly, wing rock has not developed for this set of initial conditions.
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The second set of initial conditions are also

0(0) = 50 and c(0) = 0. (3.6 - 6)

The pitch angle is 27.5 degrees The results of this test are presented in Figure 62 through

Figure 67. Figure 62 presents the evolution of the roll position as a function of time. In

Figure 63 the evolution of the roll-moment coefficient as a function of tim is shown. In

Figure 64 the phase portrait of the motion is presented. In Figure 65 and Figure 66 the evo-

lution of the normal-force coefficient and pitch-moment coefficient, respectively, as functions

of time are presented. In Figure 67 the hysteresis of the roll-moment during the last cycle of

the motion is shown. This set of initial conditions leads to the development of wing rock. The

limit cycle amplitude is 29.6 and the period is 0.30 seconds. Levin and Katz determined ex-

perimentally the amplitude to be 30 degrees and the period was 0.33. They state, as the

overall results of the experiments, that wing rock only occurred spontaneously for angles of

attack greater than 25 degrees. Between 19 and 25 degrees, the wing rock motion could be

maintained by developing a limit cycle behavior at a higher angle of attack and then lowering

the pitch angle. The result of no spontaneous wing rock below 25 degrees for an aspect ratio

0.7 flat delta wing agrees with the results of Nguyen, Yip and Chambers [1981] . Clearly the

results of the dynamic simulation presented in this section agree quantitatively with the

available experimental data. These results may not be in complete agreement with the ex-

periments because of the damping factor employed, the discrepancy in the predicted period

and the slow growth rate. The reason the damping factor was to closer approximate the ex-

perimental results, without the damping the limit cycle amplitude was approximately 37 de-

grees.
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-".-3.7 Conclusions of Dynamic/Aerodynamic Coupling

Z'}}In this chapter the complete development of the method used to couple the equations

.. '- •of motion and the aerodynamic model was presented. This coupled model was used to simu-

,, . late both free and forced wind-tunnel experiments. The results show that the coupling is in-

% deed a viable method for predicting a wind-tunnel environment and wing rock of slender delta

ili~i iwings.
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Chapter IV

Control Model

4.1 Introduction

The aerodynamic model of Chapter II was coupled with the equations of motion in

Chapter Ill. This coupled system was used to determine the motion of a slender delta wing

mounted on a free-to-roll sting in a wind tunnel. The goal of this research is not only to predict

the motion, but also to control it. In this chapter the problem of simulating control of the wing

by adding control-surface motion to the aerodynamic/dynamic model is addressed.

In Section 4.2 the method used to couple the control-surface movement with the

aerodynamic system is described. In Section 4.3 the control surface effectiveness will be ex-

amined, In Section 4.4, the minimum-time optimal control problem to change pitch orientation

is solved by using a stmplified, linearized model. Then this control law is evaluated by using

it in the full svstpm model. The same maneuver of changing pitch angles will be accomplished

by using feedback control in Section 4.5. Finally, in Section 4.6 the wing rock predicted in

Section 3.6 will be suppressed by using feedback control.

4.2 Control Surface Motion

Throughout this chapter, the test wing is a thin delta wing with two control surfaces

located along the trailing edge. These surfaces can move independently of each other, but for

the purposes of controlling independent degrees of freedom, they either move in tandem as

flaps, or they move asymmetrically as ailerons. The symmetric movement is used to control

the pitch orientation and the asymmetric movement is used to control the roll motion. The

flow is assumed to separate along all the edges of the wing, except for the two nonconvecting

cores on each side of the centerline near the apex, and the control surfaces, but it does not

separate along the hinge line. Thus, the transition from the wing to the control surface is
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It is assumed the movement of the control surfaces does not alter the moment of inertia

characteristics of the wing.

The coordinate system used to define the motion of the control surfaces is shown in

Figure 68. The positive deflection is down.

-1*1

Figure 68. Control Surface Coordinate Frames

The unit vectors of the coordinate systems are designated T, ,j and k for the body-fixed

reference frame, ij and k, for the control surface, and icc' L, and k,. for the control surface

e: when 6 = 0. The coordinate frame of the control surface is related to the body-fixed frame by
N
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. ei c  i"."

.' J c= c] j(4.2-1)
k. k.

where the direction cosine matrix, [C], is composed of two matrices. The element of these

matrices are the direction cosines of the control surface when 6 =0, designated [C.] , and the

direction cosines when 6 is nonzero, designated [C6]. That is,

[CI [C6][Co] (4.2 - 2)

where

=[O c] j(4.2-3)

and

Ico ico
j, C6] ico (4.2-4)ic kc°

, Because the rotation of the control surface is about the local i, direction through an angle 6

0 0 1
0 Cos 6 sin 6 . (4.2-5)EC6 0 -sin6 cos 6

Two quantities must be determined to implement moving the surfaces in the body

. reference frame. These quantities are the position of the surface and the velocity of the points

0 on the surface relative to the body fixed frame. The position is needed to form the influence

matrix ( Equation 2.5-2 ). The velocity is needed to form the right-hand side of the no-
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penetration condition ( Equation 2.5-2 ), to form the Kutta condition ( Equation 2.10-23 ), and

to calculate the surface pressure ( Equation 2.10-26 ).

The position of a point on the surface is

r = ra + rc  (4.2-6)

N where r. is the location of the origin of the control-surface reference frame ( written in the

body-fixed fiame and

r =xci +yoj +zck. (4.2-7)

One means of identifying the position is to use the original position of the point on the surface

and the angle of rotation. Because all positions are written in the body-fixed reference frame,

the original position of the point on the surface is

4..-

rco=X0 i +y 0 J +zk.

or

[X0 Y/Z]COT8

0¢

,[°'' 'o-- xo , y, Zo-][,C1T) Jo~t (4.2- 8)

When the surface is rotated, the position written in the surface reference frame does not

change. Therefore, the position vector at the current position is

0 
ic

'.': - =[Xo Yo Z]ECo]T J

or
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c [X0 , y, Zo][Co]TEC 6][c] . (4.2-9)

!k

,. As mentioned earlier, the control surface is rotating about the hinge line and in the i,

direction. The velocity at a point on the control surface is
,9%

-- = - × 7 (4.2-

where 6 is the :ngu!ar rotation rate of the surface. The angular rotation rate, written in the

body-fixed reference frame, Wo, is

".-'..0c = 0CXi + cocyi + °c,,k = i, = ico. (4.2 -11)

The position and velocity of all points on the control surface can now be determined given the

original position, the location of the hinge line, the current angular displacement and the cur-

rent angular rate.

Because positioning the control surface is basically the same as positioning the wing,

the control surface position will be calculated directly after calculating the body angular rates

qu'hroutine OMEGAS ). The calculation of the direction cosine matrix of Equation 4.2-2, [C],

is included in the subroutine that calculates the direction cosine matrix between the body-fixed

- and the inertial frames ( subroutine CMATRX ). The angular rate, co, is determined in the

...... routine that calculates the body angular rates ( subroutine OMEGAS ).

*'" The determination of the deflection angle, 6, and the deflection rate, 6, will now be

• discussed. Physically, the angular deflection and angular deflection rate of the control sur-

faces are input into the system as a commanded deflection angle, 6. This commanded input

... then produces a deflection through a servo mechanism. In this presentation, the servo mech-

anism is modeled by the following second-order differential equation:

. = C16 + C2 5 - 61). (4.2- 12)
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The commanded deflection angle is known throughout the flight either explicitly for an open-

loop system or implicitly for a closed-loop system. The values of C, and C, will be presented

during the specific app!ications of Section 4.4 through 4.6.

In order to make the model more realistic, the deflection angle was limited to + 250

Sfor all applications. These limits where chosen arbitrarily because no specific physical system

was modeled. However, the same procedure could be used to limit the deflection angle or rate

for any limits.

The deflection angle is limited in the differential-equation solver by including condi-

tional statements on the magnitude of the deflection in the subroutines TAYLOR, YFITER,

PRAMOD and ERRCOR. When the limit is exceeded, within these routines, the deflection an-

gle is set to the limit and the angular rate is set to zero. In order for the numerical integration

scheme to converge, the subroutine YFITER must also include limiting the new predicted sol-

ution and stopping the iteration if the new solution is beyond the specified limits.

4.3 Control Surface Effectiveness

The method used to couple the control-surface with the aerodynamic and dynamic

model has been presented. Before the design of a control system is discussed, the control-

surface effectiveness is investigated.

The effectiveness will be investigated with two sets of steady-state conditions. First,

the effect of surface size will be determined. Second, the effect of the deflection angle mag-

nitude will be presented. A unit-aspect-ratio delta wing set at twenty degrees pitch is used to

determine the effect of the control surface size. Both flap and aileron deflections will be ex-

amined. First the surfaces are used as flaps and are set at negative 10 degrees. The lift (CL),

drag (C.) pitch moment (C,.) , and hinge moment (C,) coefficients are presented in

* Table 12. The pitch-moment coefficient is calculated about .568 c, which is the location of the

center of gravity for the wing of Sections 4.4 and 4.5.
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~ 4-Table 12. Flap Size Effectiveness for a Pitch Angle of 20 Degrees

S/S CL CO C. Ch

0.000 0.677 0.246 -0.0339 N/A
0.172 0.550 0.199 0.0246 -0.011
0.204 0.527 0.187 0.0124 -0.045

0.240 0.522 0.182 -0.0110 -0.075

S,: Total area of both flaps41.S: Total area of wing including flaps

The hinge moment is calculated about the hinge axis. The hinge-moment coefficient

* is defined as

1 2Ch 2 PU SlclMh (4.3-1)

where S, is the surface area of one flap and c, is the chord of that flap. As expected, the larger

flaps produce larger effects on the lift and drag characteristics. Because the rotation of the

vorticity vector at the node is applied along the hinge line, the requirement that the derivative

of the circulation along the edge be continuous is satisfied automatically at the node on the

hinge line's outside edge. This requirement is imposed at the other nine corners of the wing

using the constraint equations.

The effect of surface size for aileron deflections is investigated by setting the port

- surface, ,, at positive 10 degrees and the starboard surface, 6, , at negative 10 degrees. The

lift, rolling moment, pitching moment, yawing moment, starboard hinge moment, C and port

hinge moment, C, coefficients are presented in Table 13.
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Table 13. Aileron Size Effectiveness for a Pitch Angle of 20 Degrees

Sf/S CL C, C, Ch,' C P

0.000 0.677 0.0000 0.0000 N/A N/A

* 0.149 0.664 0.0013 -0.0008 -0.0454 -0.0406

0.172 0.657 0.0092 -0.0007 -0.0588 -0.0530

0.204 0.663 0.0071 -0.0019 -0.0819 -0.0376

The deflection used to produce Table 13 is defined as a positive aileron deflection. The aileron

NIP. deflection angle, 6 , is defined as

" (6p - 61)

6A 2 (4.3-2)

That is, a positive aileron deflection produces a positive roll moment. The yaw moment is

* negative as expected for a pitched up wing with positive aileron deflection.

The effect of the flap deflection magnitude will be determined by using a unit aspect

ratio delta wing with 25 elements at angle of attack of 5, 10, 15 and 20 degrees. The flaps are

set at angles ranging from 25 degrees to -25 degrees in 5 degree increments. The results of

these tests are presented in Figure 69 through Figure 73. Figure 69 shows the lift coefficient,I, Figure 70 presents the drag coefficient and Figure 71 shows the pitch-moment coefficient.

These figures show that the effect of the flap angle on the lift and drag are nearly linear. The

effectiveness of the flap over the range of angles of attack is shown in Figure 72 and

Figure 73.

0
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* The aileron effectiveness is determined by setting the port and starboard surfaces at asym-

metric positions such that the aileron deflection ranges from -5 to 25 degrees. The angle of

attack is 20 degrees and 81 elements are used for the wing. The results of this set of tests are

presented in Figure 74 through Figure 77.
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4.4 Optimal Control Problem

In this section, the minimum-time, optimal-control problem for changing pitch orien-

tation is examined. First, the linear model will be created by using the results of Section 4.3.

A linear model was chosen because for such a model the optimal solution is known. This

)] simplified model is then used to determine the minimum-time control law. The usefulness of

this law is then examined by implementing it in the full nonlinear, unsteady simulation. For

this experiment, the wing was only allowed to rotate in pitch about the center of gravity.

The physical system selected to be investigated is similar to the wind-tunnel i-iodel

used by McKinney and Drake [1948] . This system is used because McKinney and Drake

provide a complete set of weight and balance characteristics for a unit-aspect-ratio wing with

control surfaces. The physical characteristics for this simulation are listed in Table 14.

. Table 14. Test Wing Characteristics

Quantity Magnitude Units

I W 0.925 kg

S 0.248 m2

b 0.498 m

c 0.996 m

C9 0.566 m

C 0.663 m
0,969 kg-m

,.. 9.413 kg-m

9.758 kg-iM2

* V 15.47 m/s

.-.. p 1.200 kg/m 3

The servo mechanism constants where chosen to be C, = -0.00515 and C, = -0.000033. These

constants yield a damped servo system.

The wing used in this development is not quite the same as the model used by

McKinney and Drake because the flaps are much larger and no tail surface exists for the
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current model. The wing for this development is represented by 25 elements and the ratio of

the control surface area to the wing area, Sf/S, is 0.240. Because 25 elements are used, the

chord length is five units. Therefore, the reference length, L, is 0.1992 m. The dimensionless

servo equation is then

v v2CI C2L(

Uor

"= -0.4 - 0.2(6 - 61) (4.4-2)

This equation is not used in the development of the optimal control law to further simplify the

calculations. It is used when the control law is validated in the full simulation and in the

feedback systems.

The optimal control problem is to pitch the wing from 10 to 15 degrees in the minimal

time, subject to the constraint that the flaps are limited to + 25 degrees. The linear model used

to approximate the wing motion is

"i.-MY (4.4 -3)
".'."." yy

* where

My = M 0 +M 6+M. (4.4-4)

* The steady state results presented in Figure 71 are use to derive the linear model. At an angle

of attack of 10 degrees the entire range of flap deflections is used to find the linear model for

the flap effectiveness. The linear model at 10 degrees angle of attack is

CmV -0.02208 -0.00232 6 (4.4 - 5)
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where 6 has units of degrees. The entire range of flap deflection angles is again used to find

the linear model at 15 degrees angle of attack. The linear model at 15 degrees angle of attack

is

Cm, = -0.02755 - 0.00212 6 (4.4-6)

The average slope is used for the entire range of angles of attack, that is the effect of angle

%% of attack and flan deflection are assumed to be independent. The constants of Equations 4.4-5

and 4.4-6 depend on the angle of attack. A linear regression is performed on the two con-

stants of Equations 4.4-5 and 4.4-6 to determine the influence of the angle of attack on the

%, pitch-moment coefficient. The total linear pitch-moment coefficient calculated about the center

of gravity is

Cm = -0.01114 -0.00109 0 -0.00222 6 (4.4-7)

where both 6 and 0 have units of degrees. The trim flap settings for the linear model are

6 = -9.9281 for 10 degrees pitch and 6 =-12.382
° for 15 degrees pitch. For comparison the

trim flap settings for the nonlinear model are 6 =-8.989o tor 10 degrees pitch and

11 6 = -12.5331 for 15 degrees pitch.

The state and control variables are defined as

x= 0 - 15.00 = 0- 0.26180 (4.4-8)

X2 0 (4.4-9)

_O and

u 6 + 12.382' = i' 0.21611. l'4 - 10)

For this development the servo equation is not used. That is, the actual 'eflection angle is

assumed to be the commanded deflection angle The equation of motion is
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m 1 Cmy

-*. 2 =. V2SE CM (4.4-11)

N or

- = -0.02794 -0.156820 -0.319766 (4.4 - 12)

where both 0 and 6 now have units of radians. In terms of the state variables Equation 4.4-12

can be written as

2= -0.02794 -0.15682(xl + 0.26180) - 0.31976(u - 0.21612) (4.4 - 13)

Therefore. the state space representation of the system is

S~i{ F0.00000 1.00000 X1  0000'" - ."2= + 1 O .3 1 9 7 6 1 u , ( 4 .4 - - 1 4 )

2 -0.15682 0.00000 {x 2  0 3 76

subject to

-0.22022 _< u _< 0.65244. (4.4 - 15)

The initial and final states are:

* xl(0) = -0.08727 radians

x2(0) = 0.00000 rad/sec

xl(tr) = 0.00000 radians and (4.4 - 16)

X2 (tf) = 0.00000 rad/sec.

The optimal solution is "Bang-Bang" control, Hermes and LaSalle [1969] . The

, switching times are defined by

0 sin(ot 4- 4) =0, (44- 17)
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where w2 = 0.15682 and -r < ' < 7. That is, the switching times are 15.87 seconds apart. The

final state can be reached in 1.73 seconds by using one switching time at 1.24 seconds. The

Jl

optimal control law is

u = -0.0428 t < 0

u =-0.2202 0: <t< 1.24 (4.4 -18)

u = 0,6524 1.24 < t < 1.73

u = 0.0000 t > 1.73

where u" is the optimal control. Because the trim conditions are not the same for the linear

model as for the full model, the control law was changed to

6c = -0.15689 t< 0

, = -0.43633 0 t< 1.24
'%" S(4.4- 19)

6C = 043633 1.24 !: t < 1.73
6C = -0.21875 t _> 1.73

where 5: is the commanded flap deflection angle. The validation incorporated the servo

equation with the equations of motion. This control law was validated by setting 6, at the start

of the time set in the nonlinear unsteady method. The resulting pitch angle is shown in

Figure 78. The actual run consisted of two sections, first the wing was held fixed at 10 de-

grees pitch until a steady state was reached ( 10 chords of dimensionless time ). After this

time the control law of Equation 4.4-19 was used. The starting time is set at 20 chords of

dimensionless time.
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Figure 78. Linear Optimal Control Law in Full System Simulation

Obviously, the control law was not correct since the final state was not reached at the

final time. However. this control law is not far from the optimal. The switching time and final

time were adjusted slightly until the final state was reached. The best control law for only one

switching time is

S=-0.15689 t < 0

6C = -0.43633 0:< t < 1.25
(4.4-20)

6, = 0.43633 1.25 < t < 1.66

6C = -0.21875 t 1.66

This control law is not optimal because only one switching time is used. A better solution

would be found by including more switches near the final time. Nevertheless the control law

of Equation 4.4-20 will be referred to as the optimal control law. The pitch motion for the op-
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timal control is presented in Figure 79. The commanded and actual flap deflection angles are

shown in Figure 80. The commanded flap deflection is the curve that changes instantane-

ously. The lift, drag, pitch moment and hinge moment coefficients are shown in Figure 81

trough Figure 84, respectively. The slight irregularities in the figures occur when the flap

moves through the plane of the wing. This change in position causes dramatic changes in the

flow near the control surfaces.

10'

-0.5 0.0 0.5 to 1.5 2.0 2.5

ThT (sea)

Figure 79. Optimal Control Pitch Angle
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Figure 80. Optimal Control Flap Deflection
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Figure 81. Optimal Control Lift Coefficient
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4.5 Feedback Control of Pitch Orientation

The best solution to change from 10 degrees pitch to 15 degrees pitch has been de-

veloped in Section 4.4. This solution is applicable only for the stated conditions. A more real-

istic means of producing the desired motion is to use feedback control. The block diagram

of the system with feedback loops is shown in Figure 85.

Figure 85. Feedback System to Change Pitch Orientation

, Again, the motion of the wing is restricted to one degree of freedom in pitch. The

dimensionless gains are chosen to be K. = 17.50 and Kj - 677. Therefore, the dimensionless

flap equation is

C = 17.5(0 C -6) - 6776 + 6,,, .  (4.5 - 1)

0
S. where 6,, is the steady state commanded flap deflection. The dimensionless equations used

in this simulation are

S=Ry (4.5-2)

, -0.46 -0.2(3 - 6c) (4.5 - 3)

6s =6 (4.5-4)
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and

5P =6 (4.5-5)

where

R - pSL 2  0.000416C (4.5-6)', 2 l MY,

6. is the starboard deflection, and 6P is the port deflection. The feedback control law is im-

plemented by setting the commanded deflection at the start of the time step, and then holding

it constant through that time step.

0 The results of implementing this feedback control law are presented in Figure 86

through Figure 91 where the pitch angle, flap-deflection angle, lift coefficient, drag coefficient,

pitch-moment coefficient, and hinge-moment coefficient, respectively, are shown as functions

of time. These figures present time with units of seconds, for direct comparison with the fig-

ures developed by using the optimal control law.

o.
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Figure 88. Feedback Control Lift Coefficient
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4.6 Feedback Control of Wing Rock

The applicability of using feedback control to change pitch orientation was demon-

strated in Section 4.5. The use of feedback control will now be used to suppress the wing rock

motion predicted in Section 3.6. All the physical conditions are the same as used in Section

1 3.6, except the damping term was set to zero. The feedback block diagram is shown in

S"-Figure 92.

Servo Limi-ter --- P ,A C

Figure 92. Feedback System to Suppress Wing Rock

The motion of the wing is restricted to one degree of freedom in roll. The

dimensionless gains are chosen to be K, = 1.0. and K = 20.0. Therefore, the dimensionless

feedback equation is

6A= -1.0 -20.0. (4.6 - 1)

This simple control law results from the command roll angle and the steady aileron deflection

angle both being zero. The dimensionless equations used in this simulation are

* RX  (4.6 - 2)

(A -0. 4 ()A -0. 2 'A - ')A ) (4.6 - 3)

(s "(0A (46-4)
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and

6 =- 6A  (4.6-5)

where

Rx  pSbL 0.16342C . (4.5-6)
- .2 Ixx

The initial conditions are

0(0)= 50 ) 0

(4.6-7)
6 AJ(O) = 0 6 A(O) = 0  and A(O) 

0  O.

The angle of attack is 27.5 degrees. This case is the same one that produced the wing rock

V' of Section 3.6. The wing rock results were presented in Figure 62 through Figure 67. The
simulation is run to a steady state at these initial conditions ( 10 chords ). The wing is then

released. The resulting roll motion is shown in Figure 93. The port aileron deflection is pre-

sented in Figure 94. The lift, rolling moment, yaw moment, starboard hinge moment and port

hinge moment coefficients are shown in Figure 95 through Figure 99. From these figures. the

rocking motion is shown to be suppressed. Again, areas exist where the predicted loads are

not smooth. This situation is caused by the ailerons repeatedly passing through the plane of

the wing.

. '.

5%=,.".

S c-
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Figure 94. Feedback System Port Aileron Deflection
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Figure 97. Feedback System Yaw Moment Coefficient
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Figure 99. Feedback System Port Hinge Moment Coefficient
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4.7 Conclusions for the Control Model

The nonlinear, unsteady aerodynamic/dynamic model was coupled with movement of

control surfaces to produce desired changes in the orientation. Two types of control laws were

developed, an open-loop near optimal and a closed-loop feedback system. The examples

presented in this chapter illustrate the usefulness of the total system model.

As for the examples chosen, the feedback developed to change orientations is rather

robust in that most gain settings produce reasonable results. The only problems occur when

the flaps are used to maintain a large angle of attack ( greater then 20 degrees ). At these

large pitch angles, the negative flap deflections lose their effectiveness. The control of the
,%

wing rock is not as simple. The gains selected are in a relatively narrow band of values where

S. the rocking motion is suppressed. For small gains, the ailerons are not moved enough to be

effective and for high gains, the actual deflection lags the commanded deflection by a signif-

icant amount. Thus instead of suppressing the motion the ailerons can actually add to the di-

vergence rate of the motion.

I
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Chapter V

Conclusions and Recommendations

5.1 Introduction

A completely unsteady aerodynamic model based on a vortex-panel method was de-

veloped. This model was coupled with equations of motion so that forced and free wind-tunnel

tests could be simulated. The aerodynamic/dynamic model was also coupled with control laws

that govern the motion of the control surfaces so that specified maneuvers could be per-

formed.

5.2 Conclusions

The vortex-panel method developed in Chapter II provides a reasonably reliable un-

steady aerodynamic model. The solution for closed nonlifting bodies is very accurate, espe-

cially when one considers the small number of elements used in the examples. One reason

for the accuracy with so few panels is the rotation of the vorticity vector at the nodes of the

surface mesh. Applying this method to closed bodies with sharp corners could give erroneous

results, because the rotation of the vorticity vector assumes the surface is smooth

The method developed for thin lifting surfaces has several additional requirements

beyond those needed for nonlifting closed bodies, all of which must be included for accurate

simulation. These requirements are that a variable vortex core system must be included along

the edge, the edge cores must be continuous through the first derivative, and the Kutta con-

dition no pressure jump from the upper to the lower surface) must be imposed at the trailing

• edge. Using these conditions, one finds that the results for thin flat rectangular surfaces are

very accurate. No problems were encountered for this planform. The simulation of flows over

delta planforms is not as robust. The method can be used to predict accurate solutions for this

type of wing, but the solutions are influenced by the offset distance above the wing and the

number of cores convected from the sides of the wing. For delta wings, the method performed

.'
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better for the lower aspect ratio wings. As noted in the forced oscillation tests, the higher as-

pect ratio wing did not have smooth aerodynamic characteristics. The adaptive grid tech-
-.

'V" nique, described in Section 2.13, is not unique to this method. It could be applied in any

,'V progressively formed vortex filament model of a wake.

The coupling of the dynamic equations of motion with the aerodynamic model is

straightforward. This method can be used in conjunction with any aerodynamic model.

The addition of the control surfaces and the implementation of the control laws are

also relatively straightforward. Though this work was the first attempt to couple the

aerodynamic/dynamic simulation with a control law, few problems were experienced.

5.3 Recommendations

Several areas should be examined to either improve or extend the method. The im-

provements are needed in the aerodynamic model. The extensions are areas outside the

scope of this investigation that will further the usefulness of the method.

Three areas exist that should be examined for improvement of the present aerodyna-

mic model. These improvements are implementing the constraint equations, positioning the

wake, and developing a better adaptive grid technique for the wake.

The constraint equations were imposed by the use of weighting factors. This method

was chosen because it is easy to implement. The weights on these equations were found to

be significantly larger than the no-penetration conditions. This weighting provided solutions

that were insensitive to the specific weight employed. This result suggests that these

equations should be imposed exactly. The method of weighted constraints cannot satisfy

equality constraints exactly. One possible method would be to use Lagrange multipliers. A

problem with imposing the constraints by using a Lagrange multiplier technique may exist

because all the divergenceless equations are not independent. A better method may be to use

a method of direct substitution.

;n the current method the positioning of the wake was implemented by approximating

the position by a first order finite difference formula. This approximation is inconsistent with

the solution of the dynamic equations which are approximated with a fourth order predictor
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corrector algorithm. This inconsistency could be removed by using a higher order approxi-

mation for the position. The problem with higher order approximations is that they require

A- %iteration. The positioning of the wake already uses the majority of the computer time during

processing. Therefore the cost of a method that requires iteration might outweigh the bene-

fits. Nevertheless, the impact of using a higher-order method should be investigated to de-

termine the cost and benefit.

The adaptive grid technique developed for splitting the wake as it spreads should be

re-examined. T'. method presented in Section 2.13 was found to provide a smoother wake

than the approach used in the vortex-lattice techniques. The basic problems are with the im-

plementation of the method. First, the splitting was implemented by assuming that after the

wake element splits, the parts never rejoin. This assumption is valid, but was not implemented

v.,. correctly for unsteady conditions. The current method identified a specific element of the

wake by its position relative to the wing and once it split, it remained split. With the wing

moving in an unsteady manner at one time the element might require adapting the grid.

However, as time progresses, this split convects downstream and the element currently oc-

cupying the position relative to the wing may or may not split, For this reason, splitting in the

wake was not used during the unsteady tests. The second problem with the implementation

for splitting the wake is that a crossflow of circulation exists wherever a split occurs. This

phenomeon is caused by one ring of circulation in the wake adjoining two rings at a split point.

Because the one circulation cannot equal both downstream circulations a crossflow exists in

the steady state. Physically, this situation should not be the case, but in order to satisfy the

conservation of circulation requirements using the equations of Section 2.13, crossflow results.

Some rectification of the physical system with the model needs to be developed.

The potential for extending the current method seems great. Several other areas

* should be developed. The first of these areas is to couple the current model with a structural

model to provide a general unsteady aeroelastic model. The current method would be a good

choice for the aerodynamic half of the model because the pressure is continuous on the bod,'.

The second area to be developed is that the model should be extended to closed

bodies with separation. This model would not have many problems with wing shapes because
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the separation line is known. The model could be coupled with the boundary-layer equations

to predict separation from the surface of a smooth body. As a by-product of this coupling, the

form drag could be estimated.

The third area is to re-examine the basic form of the wake. The discretized wake used

in this work is a good approximation to the wake surface, but it seems reasonable that a

continuous vortex sheet would provide a better wake model. Before this improvement could

- be implemented the method of reducing the vortex strength of the wake sheet as it spreads

will have to be developed.

The remaining areas are as follows. The model could easily be used to investigate

ground effects, which could be done with images.

Next the model could be taken out of the wind tunnel and into the world. That is, the

three position degrees of freedom should be included in the dynamic simulation. This possi-
.,.-.-

bility is not as straightforward as simply adding more differential equations, because the

dimensionless equations require a constant reference velocity and the integration technique

requires a constant step size. These problems might be circumvented by using the idea of

computer-aided design programs that work entirely in physical units rather than scaled rules

and using an integration scheme where the step size cannot be adjusted by the algorithm but

is not constant for the entire test.

The final recommendation is completely aside from the development of this or any

other aerodynamic model. Unsteady wind-tunnel experiments must be performed so that a

means for validating unsteady computer simulations exists.
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Appendix I

Velocity Induced by a Triangular Element

1.1 Integral Equations
The velocity induced by a general triangular element can in general, be written in the

-. following form:

Vd = Vxi + Vyj + Vk,

where V is the velocity ar, i ,j and k are the unit vectors of the local coordinate frame of the

element. As shown in Chapter II, the velocity induced by a vortex sheet can be written as

Vd =- - curl da

where i is the integral of the vorticity across the thickness of the sheet

Y =YX +Y~j,

The actual vorlicity is approximated by the linear function

Y ('/Xl fl + Yx2 f2 
+ Yx3 f3)i + ( 1iyl fl + Yy2 f2 

+ Yya f3)j

where , and 7,, are unknown constants and the f, are the fol-'wing basis functions:

= a, x + b, y + I

f2= a2 X + b2 y

f3= a, x + ba
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-, 'where

I b-a 
a,= -- , b,- ac a2 "=- , b2 =-- -, a3 =0 and b3=c

The position vector to the point where the velocity is to be calculated is

r =x Pi +ypj +zk

* and the position vector to a point on the sheet is

.,.-..s=xi +y..

For convenience we let

."~~~ .. (X--)2 + (yp --y)2 + Z2.
r = ,-s 2 =(XP-X) P

.+zp.

In terms of the basis functions

Sf a1 x + blY +1

f2 = a2X + b2Y

Sf3 = a3x + b3y.,

*' the linear variation of the vorticity on the element is

Y [yxlfl + Yx2f2 + yx3f3] i + [yylfl + y 2f2 + yy3f3 1.

Then the induced velocity is approximated by

V11= curl j'J I[(xi + y fl1 + (Y2 I+ Yy2 )f2 + (YX3' + YYi )f3] dxdy.

Because y,, ,a, and b, are constant, the velocity oan be written as
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vd =-, curl([(yxl i + y jT)a, + (Y121 + yy2j )a2 + (Yxi + Yy4 ra]J dd

+ [(yxl + -yj j )b1 + (YX2 + Yy~j Ab2 + (YX3 i +- Yyyj)b 3l LJ-~ dxdy

+(YX +Yy1j dxdy.

Adding and subtracting xP from the first integral, yp from the second and using the fact

that neither of these depends on x or y, one can write the velocity vector as follows

- -- XP
= curl[(yxl + yy j )a, + (yx2 i + yy2j )a2 + (Yx3 i + Yyj )a 3 ] jj - dxdy

0+[(yx i I+ yyj )b1 + (Yx2 j + Yy2J )b2 + (Yx3 i + Yy~3 )b3] J r dy

+ [(/xi + yI j )(axp + blyp + 1) + (YX2 + yy2j )(a2Xp + b2Yp)

(ix3 i+ Yy3J )(a 3xp + b3yp)] f dxdy}.

Index notation can be used to reduce the expression above to

3

V. _ curl (yxni +Yynj)B n
n=1

S .1

where

B"=a r dxdy + b, r dxdy + (an p + bnYp + 6n) 7 dxdy

* and 6, is the Kronecker delta.

Expanding the curl results in

1" Y'yn azp
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3z as
n-i

where

+a xdy +a xd

(anXPbnYp + 6 l) rf dd an ff -L dxdy

aB ~ X XP a ffY Yp d
nra dxdy + b-dd

a ayp f ay S r

+ ax np+6l - 1f5+ dxdy + bff +L dxdy

and

---= n- r dxdy4-bn f HS r dxdyO azpJJ f S
+ (xp+ bnp+ 6M1) -- f f +L dxdy.

Next some new notation is introduced:

S I 1 -~ - j' P dxdy

*12 Sf r dxdy
Oyp s
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fJ4 X-XP dxdy

14 = --2JJ rfY-Y dxdy

15 - -fY -Yp dxdy

16 = rfY-Y dxdyazp S r,

17 =a ff -L dxdy

18 = 2- 1f dxdy

19a 1f dxdy
azP JJ r

110 dxdy.

In terms of the new notation, the velocity components are

-X C [yy (a,1 3 + b, 16 + a, xplg + blypi9 + 19)

+ YY2(a 2l3 + b216 + a2xPI9 + b2ypl9)

+ yy3(a3l3 + b316 + a3X,.l 9 + b3.ypI9)]
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1 E Xx1(al1/3 + b,116 + a, Xpl9 +r blYpi9 + 19)

%- r Yx2(a2l 3 + b216 + a2xpl9 + b2ypl9 )

% + yx3(a3l 3 + b3 16 + a3xpI9 + b3ypl9)]

2i and

Vz ! [YI(11I1 + b114 +a a 1~7 + b, Yp17 + 17 +a a 110)

Ir41r

- y (a 12 + bll5 + alx.l8 + blypl8 + I8 + b 1110)

+ y.2(a 21 + b214 + a2xpI7 + b2ypl 7 + a2110)

- yx2 (a2  + b215 + a2xpl8 + b2YpI8 + b2 110)

+ y(a 3 11 + b3 14 + a3xpl7 + b3)pl 7 + a3110 )

, Yx3(a3l 2 + b315 + a3xpI8 + b3Ypl 8 + b31lO)].

1.2 Evaluation of the Integrals

The components of the disturbance velocity have been expressed in terms of the in-

tegrals 1, through 110. In this section these integrals will be evaluated. The first integral is

f x J xP dxdy.

* .. With the definition of r, 11 can be rewritten as

aff X - XP
'" i= [(x-Xp) 2 + (y-yp)2 +z21] 2 dxdy.

The general triangular element, area S, is shown in Figure 100. The integral over the area

of the triangle is then
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(00 (bc)

% Figure 100. Tnua lmn

bI

(00 (a, 0)P y p P

Figur 1 00 Ta b riatnuars lmn

C b-aya

0 -y

then C can be writtena

P du

a x dyX) y yP) Pj1 y

OX p
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(xp -a) f[( b- y +a - x) +(y -y) +z 1 dy

1=+ a-cb f C y b-Ca y +a - x) 2 +(y-_Y) 2 + zP] 1 /2 dy

- X- x4)2 + (yY 2 + Z2]- 1/2 dy

+4- y 1(-y-_XP)2+(y-yP)± +zj2-dy.
C j 0 cP

Next let

'.H 1 ,f[ b- y + a - x)(y-Y) 2 + Zi 112 dy

H2 =fy[( b-ca y+ a -xp) 2 +(yY~p) 2 + ZP 1 /2 dy

H3 =f~y- XP) 2 + (yY~p)2 + _7P- 1 /2 dy

00

b 24 Z2]12 y

-4,,

c)H 2 xH, +~ H,.

Next the evaluation of H,:

* H 1 =J[(b ba y~-~ 2 (yy +~ 2  y

0
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After expanding the squares and collecting terms, one finds

H, = b-a )2 +1]y 2 +2[(ba)(a--xp)--yply+(a--xp)2+y2+Z dy.
_ b-aP

Defining

- ) +1+(

* and

2 )2 + 2 2

We note that r3 is the distance from the vertex at (a,O) to the field point (xp, y, zP). One can write

H1 = CJY + 2"12Y + r2]-1/2 dy.fo

Completing the square results in

0 1 =Hf0[(Y+ )2 (2 )2 d2 -1/2H, = _ _+ -\ _ _ - dy.
i- 0I 11Cj X

In general,

SfLu
2 + a 2

]
- 11 2 du = In[u + (u 2 + a 2 )1

/
2

],

it follows that
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H, In 1 Ca + 2 + [(C'X + C2) 2 +-r3xiall'
, .2. + r3

Now letting

2 2 2
r2 =c o,+ 2ca2 +r ,

=(xp - b) 2 + (yp - C)2 + Zp.

We note that r2 is the distance from the vertex (bc) to the field point (x,, yp, zp). Then

'p, H1 =-' lIn  •

Now the evaluation of H,:

H2  y [( b-a Y + a- XP) 2 + (y - YP) 2 + z2]-1/ 2 dy

c c ,X2 2  2 2 -1/2

- :, c[(+)i 2  ( 2  rli]
)2 j__ )2 +, -- y+.

Adding and subtracting - to the first factor in the integral results in

Cp r.22]-1/2-, 
2 y+ - - dy

2 fioi ( L 1 ' 1" ' (; x2a2 2 2 2 r.2 -1/2

f , 0 +(T1 dy.

The variable substitution

S '22 2 
2 
13

.,.;.~~ r -+-
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yields

H2  1 du a2
-I fo 2u1/2  a1 Hi

2u21/2 c a2 /2

- - -- a1  a1

a2)71 _L ) _1] E( _2) -l -J12-~
)2 + r3 ]1/2 2 ( r ]1/2]

[(Cal + a2) (a2) + r r3  -L H -.

*. The definition of r2 gives

H2 = (r2 - r3' - a2 H.

Now the evaluation of H3:

[o ( b Y 2 + Y2]-112

H3= (( _ yp)2 + P dy

which can be rewritten as

2
fL _ 2 dy.

V-3 0

I where

Sb 2
"3 (-) +1

b:4 =-C )xP + YP
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A.'.

and

2 2 2 2
ri =xP+y +z,.

We note that r, is the distance from the vertex (0,0) to the field point (x,, y, zP). Completing the

square results in

~~~ H3 3f y_.2 4 4 r2 1-1/2

2( 2 ]

H3- 3 -7 4 (- - - +

2 4 + r1 2]/

:.:-. .

A~~ ~ (ca3 -~4 ) 2  2±r[2 c2cb + 2 + 2 + ]

3 1 [b -n Cct3  + .. .. + xr

* H4 =f[(x -)2 + (yC)2 + Z,]Id

Apendx2

H In + :- SOC 
+ oo' r2

Fialyte,:lato:o ,

H4, = y<[( bY,(P 2 + (Y,, YP)+ Z2111]

• - t h e
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". ...

H,= Jy +()2 1) Y2 -- +y y+x -y 2 1

= [y2 -2=y + r2] 112 dy.
a'. 0N+

Adding and subtracting - to the factor in the numerator yields

f ~ ')[y 44 
2 -2

( y - -- 3 - + dy

%. o3
\/C3 0C

1 2 / 4 2 ] 1 12 c + a 4 -H
_ [_ --

2 2 1(2(Ca3 - x 4 ) C4 21 _ 4

The previously derived relation of r2 can be used to obtain

H4  -i3 (r2 - r1 ) + -- H3.

This completes the evaluation of the first integral.

The second integral is

p...-x

0* '-"- 12 = " Yjo r dxdy.

Following the same procedure as for I1, one can obtain
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CbCay+a X - XP

128 __ 2 2 x-1'

b- y y-x)+( 
~

* 0  (1Yp

- [(A. + (y P) + z P dy
y C p

f = y-y) y~f[ b- y a-_X)2  + (y_Y) 2  +PJ1 1 2

y _ Xy[( b- y _x )2 +-y) zV 1  dydy

0

J b 2 y++a -]P) 12  dy d
0

0 cr

13 p fC j-L ya x-x y ]-1

+ J"(x - )2 + ( Y -p + z 2" dxdy.

Apeni IpH 2043)+H4-1-2

0



f fzp[( yb + _ xa) + (y -y) +

C b yaxP)2 + (y yp)2 + z2l-12 dy.rr f, ____ 22 - P
.. fp- -zJL [(pp.

Then

13 Zp(H 1 - H3).

The fourth integral is

f'" " 1 = dxdy

In the local coordinate frame of the triangular element, the longest side of the triang'e is al-

ways placed along the positive x axis. This allows the integral to be easily written integrating

with respect to y first.

Y ---- dydx
-CXJ f 0 [(x - xP) 2 + (y - Yp) 2 + z21' 2

(a r xa) y - Y+ *x P bo [(x - x P) 2  2 +y 2]ylj2 dydx.

Evaluating the inside integral results in
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f b 14 E(x - xp) 2 
+ y p)2 - dx

'.2 
c-- 2o 21l/21/

.- I (xx- x)i + (x -a)z -yP) ]dx
',:.~~X - b -x- + a+ ] .

[ }::~~~~ )2 +/x x2 +- Z2]1/2 x + ]

b

: therefore
a 

a2.

[(X aP2+Y Z2a /2 f [( 2 + 2]1/2

0x aX x aP X) p P d

l

r 3 -
r l

.- .

"" " The second and fourth integrals can be combined into one integral from 0 to a, then

1 4 2 - X O X - y p + zZ P d x

S.., therfob

•f a (X 2]1 2

i-p
$a+~--(X_) Xy"z)2 dx - a) [(-x) 2 + z ]dx

a P

2-~~~~~ 3 - r1 Y 2T.

heowh nc d can be rewritten as
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1X _ f X)[ _ (x - ) -
2 + dx

2 2 2 -1/2ii~

+ = a (x - xp)[(x - xp)2 + (b_+ dx

Ney. let

b 2+ Y)222 Z3-12
H5J[(X -Xp) +(xP+~ dx

-

w%.

Sx[(X-- )2

H7  a(X P)x+ -a c (x - a) - )2 + dx

'V and

S.H 8 =J [L(X -X) + kb-ca (x -a)-Y~zJ" dx.

p.Y.

* Then

.

,H=5 - H6 +xpHx- + (x -xp)[(x - 2 2

0
0

Therefore, the fourth integral is

14 .xH 5 ,, 6 + xH 7 - H8 +r 3 - r,.

Now the evaluation of H,:
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07

o. b

Expanding the squares and collecting terms results in
-J .

., _) H+ (2 _ 2+y2 + z2] - 1/ 2 x

Let

"._ ("C )2+1

0+
2b

and

then substitution yields

H5 - 1 x2 -2 6 x + - 1 dx

"6 2 2 r, 2  ]-1/2

- X -- - - dx
0 0. a,5 a5

l
T 

T... . t a / ,6 2 / 6 )
2  r2 1 1 12

(- -) + [(b - ) ( )2 r12

a5 X5OL C
-- -"In . . . . . . . . .

-,'756 
2 6 +) r2 ]

1
1

2

-_ 1 __ )
]/2} -

,' 5'. ,X s 6 +  (ba 5 s r r ,,5]
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Considering the square-root term in the numerator, one finds

,[(bx - 6)2 2 + r2] 11 /2 = [ b 2 2 - 2b' 5s 6 + a2 a + 2a ]12

-a_5 [ - 2ba, + +

1/0( = [b2 + C2 - 2bx,, - 2cyp + + z2] 1 /2

rr-- 2+ c - \5 r22

The result is

___ boct- a6 +,I"5r2 }
Next it will be shown that

bas - o(6 + -Iar 2  C a3 - 04 + I/ _3r2
a6 + a5 r, a4 + -3 r,

This will be proved by showing that

(b9 5 - 0[ + a5 ~r2)(Nri -l a4 -a a4 + -a. r2(F5 l 6)

s an identity. Multiplying out both sides of "he equation

5% a63 br - V65 '3 ri + r/s -3 : 2 -br. -b + a6a4 - a 4 JO(5 r 2 =

13%, a5 br, - 04v a5 r, + 6(5 0 V(3 r, 2 - + O6a4 - O6\ 3 r2

Collecting terms

00

First,
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V.,

/ c + C 2 +2  XP-+-- )b,,2 2)1/2 =/0,

+= ( -U +=LU)(,_

r.

.b

and second

a~~m~b C2 +b 2 )b -()p+ ~yp)( b 2 + c2 )C.,

= (, + (c2 +b 2 )- (-.-+--)-(b2 +c 2) =0.

Therefore,

H5  In C 3 C(4 + NJ.r 2

a4~ + .,/3r,

-V 1( H

S( )12 H3

and finally because b ,.id c are both positive

b
H5 = - - Ha .

H H-

Next the evaluation of H,:

S ~H6 _ j [x + x + ZPYM dx
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,;.. y

___ b 2r 6 r2 -1/2
H6 X 2 -! -x +- I_ dX,'.. as-- .- x x a2--- +-s 0dx

fb X~ [X --66 
2 -/

f~ b X 566 6 ) r1
2 -1/2

- _L_ -2 _L 2 +a dx

t X as dx

___ fb \X 6 2 \21/
O- I (6 j x5 )-5 dx

_( ( [(6 )2
-L[ *)2 + r )2 ] 1/2 ,6 ()2 a(5)2 +i ]1/2 +a

1 2 2 /2 r1 ,

;::::::~OC 2 b ,,.,,/ - + r, 5 + H % j + ,

- [b as-2ba 6 +as --- -

Then using the definition of r,

- 6 1 (r2 - r) H5.

The evaluation of H7 :

0a

H7" [(X XP)2 +( C (x a) yp)2 Z2--1/2.dx-%.fl, 
H 7  

- a~ -
P+- + d

* Expanding the squares and collecting terms, one can obtain

"':" I C X2C 2

H7 ~i+( b-ca )2)X22(xp+a( b 2 a +b aX

"-" -"2 + 1 2a )2 2 /

+ x +-a2 + -a y + Y2 + z,] dx.
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We introduce the following definitions:

c 2
=1+

a8x, a( _)2+

b-a b-a YP

and

C ) a2 2 ca
b= b-a } b-a

results in

0

2 2 2 -1/2H =7x22,8x+9+x.y. +z] dx
%.' f

J0[x -- 8 2 q + 1 -1/2 dx

(X a7.

S( ( - +-

a a- + [(a _a + 2

a)2 8_ -
y)( )2 2 J 2

0 Examining the term under the radical in the numerator. one finds that

a - I 2 a +2- ca 2p  +
7 ~a-xa (b -a) 2 + - ~r

-2C2 2C2 2 2
[.a 2+ a)2 -2axp -2 2 -2b-a Yp + a 2+2ca r2

' (b-a (b-a) b- (b - a) b-

2 + 2+ Z21
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0

7[(a - xp)2 + yp + zp]
%j.7

gV=  therefore,

2

ka~ -1- _8 )' + ag + -_-=--:2,C7 a7 V7

Next examining the square-root term in the denominator, one finds that

/2
b -8 _L )8 2 [ 29 22L _ C

0'8 -2-_ 
(  8 1+9

+2 ca r.2
a7) a7 "7 -"7 -7 7(b-a) 2 

b-aYP+

2+b22 bc 2abc bc +c ca 2
(b -22bxp-2(b- 2 -2 --a + ( b- yp + r

7 2 b (b -abb- a)

[ b 2- - 2 b x p + C ( b 2 b + a 2)c b - a + r 2

2 +C
2

[b -2bx~ + 22 + xc + y2 +z]

-1% G7 [(b XP)2 + (C -Y@2 + z2]

therefore
0

/ 'X 2 / 8 2 a9 r2  1 2
I b---- -0 -j_ )2 - 2,

a7 a 7 a 7 aL7  7 r

* then

8 r3
OC

H7 -In - 7
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H7  ~ In c 7a - a 8 +1/a7 r3
a7 Tb -a 8 + J07 r2

One can show that

a7b - 8 + 7r 2  -2 + ,/lr3

4 This is done by showing that both sides of the equation equal the same expression. First

showing

a 1 C + a2 + 1/a-l r2 /a'I r3 - -2
2 + VQ' a 3 Val' r2 - a2 - Cal

Clearing the denominators gives

(-1c + -2 + %/I r2)(Val r2 - a2 - ca 1) = (a2 + /a- r31(1 r3 - =2/

Multiplying out both sides of the equation results in

2 + 2-0(1r2 - r21~i1 2 + r2-'a--a2 - r2"/a1 cal + r2 .J"/ 1l -a2 2Ca2a1-C2a1

2 al~-r3 /i + r3,[., _-a

which can be reduced to

2 2 2 =2
(r2- 2ca 2 al - C alril

* Then

( ,.(r2 - 2ca 2 - C -al) r3a.

Canceling i, and using the definitions, one can show

(b-xP)2 +(cy) 2 + z2 -2c (ba) (a-Xp)-yp (b-a)2 C 2 2
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It follows that

22 2 2
b 2bx +x +c -2cy p 2+y+z2 2y 2 2Z2

+2bx -2ba + 2a - 2axp + 2cy, - b2 + 2ba -a - c2 =r.

Canceling again leads to

2 2 2 2 ~ 2 2
x +y + z + 2a =  2ax P a2=r ,

and then regrouping the terms results in

2 2 2 2(a-xp) +yp + z= r

which is the definition of r3 given earlier. In order to show the original premise, the following

must also be true:

a7a -a + /57 r3 -_. r3 - -2

ca7b -(x8 ±+.107 r2  .7r 2 -i 2 - Cal

' This will be shown by expanding both sides of the equation. First

7 b - 08 4- /7 r 2  [ + -a )(- Xp )( b- 7r2
--'" T -a Y,+ -r

The local coordinate system is introduced in such a way that a > b, always; thus,

2 21(-a) +C 112/--7 (b - a)2

/ 2 2

.. (b- a) +C
" "-"lb -al

S(b -ba) +c
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Multiplying top and bottom by a - b yields

-w-, Oc~~~7a -a 8 + + x7 r3  a(a -b) - x(a -b) + yc+ f(b -a) + c r3
a 7 - a + aT 2  b(a -b)-_C2 -x(a -b) + ypc+ 1(b-a) +C2 r2

and expanding the other side of the equation yields

S[ x ba +(b - a C
r3- a2 [(a XP -P +a r

-- p - 2 4"C r2

* Multiplying top and bottom by c yields

- "+/".

"V" _ r3 - 2 (a - xp)(a - b) + ypc + (b - a) +c r3
11 r2 -02 - c1  a(a - b) - xp(a - b) + ypc - (a - b) 2  (b - a r2

(a - x-)(a -b) + y(c + 1+b - a)2 + C2 r
3

a2" _ ab - b 2 +J 2ab - a2 _c 2 _Xp(a - b) + ypC + V/(b - a)2 + C2 r2

(a - xp)(a - b) + ypc + 1(b -a) 2 + C2 r322 _ 2 2 C 2 2

ab-b c2- xP(a - b) + ypc + - ( b a+ (- r2

2 2

.,;,k'. (a - Xp)(a - b) + ypc + J(b -a) + C2 r

~ +c r3

2_2

b(a - b) -c - x(a - b) + ypc + /(b -a) +c r2

Because both sides of the original equation are equal to the same expression the proof is

complete. Therefore

1 11C + X2 + 1,7/ r2• . H7 = In _
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4r .

.ill 1
H7  H I

1fm7

[(a - b)2 ]1/2

[(b -a)2 +C2, 11/2 H

- a/ H1

c 1 /

With the restriction on the orientation of the triangle, it follows that

H7 =a -b H 1

The evaluation of H,:

2 c (2 12-1/2d

22

(b-a)2

H4 = [x - H1 +

+ "8 ' x, -28 x 8 + 'X + _ j dx

- ~ H1

71 a7  a- 7 -7

,J' x7 x --+ b - a ( a T+ dx

-- 1/

ApJp[endi-x Ix+ 2+ d

* -:

- .' " " .: - : k,,, ," ,,,' t" . ,', ".s ,.x[(x" ,-.-.-.).2 -- ( -,.).-2- -.-.-. 1./2-. dx "

-S -- q"-" m% " % % % % %'% % %'" ,",% % '. % " ," . % . . ""-" 1" -% ,% . "%



rS"

..: .

H8 -X - w7 37 a7 +b 'Z
-2

K a 8 \2 8 \2 +a 9  r~11/ a 8

- b - i-S T +H
- 7 - a7 / a7  a7

"""~A hown bopefoe this educetioo1.

The eal atio of'' I

8 rx H11/2

a 7  Lka/ka 7 /a a7 ]

7/~ L a Ifa7Ia17

then

r3 -r 2 0a8 H
7  a

This completes the evaluation of I,.

The evaluation of 1,;

:::::

'15" "'r dxdy.

SC.-.Integrating in the y direction first, one can rewrite the integral as

5 f '-b (-~ 2 +(Y 2 +~" dydx
avp 0 0 ( P2+( 1/

a (JaJ) (x-a) Y- dydx
a* fY +o [(-~ 2 + y- )2 + zPi2]
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'(X _ X)Fb + X Y -2 + 2]/, 2 dx

,-" ." *' ( 2 2-11/
f~ b

m0
f-- b [(x - XP)

2 + y 2 + , 2V/ dx

0 -ay" P P

+ ± I (X -Xp)2+( (x -a)y)2+]1/ dx

.- ~ X+ ['x x)2+ A x a) y Z2z1/2
/d

fb', "..ayp 
P

The second and fourth integrals can be combined into one integral from 0 to a

fo2 c 2 z2 ]12

* I 5 f~~[x-x~2 C(-2x-y)2+2]i1 2 d

+ a -- [( -x)2 + v (x a)- p +dx
ft eypb-a

8( 2 +Y2 +Z2 1/ 2 dx,

-X ,.. which reduces to

.f 0 d+

b - ( T (x - )(a) + ) a (x - a)dx

00
-

222 /2 d"

Taking the constants outside the integrals yields
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2 + C 2]-1/2
-15 b-a b- x))b -yp)2 + + dx
+[yp+ X _XP2 r(x__Xp_)2 + 2]-112

+ Y c I b I ( P c (x-a)-y N 2  21-1/2 dx
b - a f \ b-a P'PI-

x[x x)'+(x - a) Z 2 -1 /2 dx
:" ~b -a ----- b - a ) -y

- y (X - XP) 2 + y + dx.

We introduce the following notation:

I

H9 ja[(x - XP) 2  + dx.
0

Then it follows from this definition and others given earlier that

15 = YPH5 - -b H6 + [yp + ]H 7 -- H - ypH
b - a b -a

The only integral that has not been evaluated in this expression is H9, which is

H9  [(x - 2 + Z2-1/2 dx
0f 9 (ax[(-X) 2 +y ±~]

X,) +.2 2 ]1/2}22 ]i'

=ln}a-x)+[xa-x#) +y 1 'z }
=ln - , (ax j YPr3

.... In .. .. .. .+21.....----

.. n['. - X + r,

;' " The evaluation of 1,
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y.

6z' 6 raz jj r- y

Following the same procedure used for 15, one finds

,C

-X Y - Yp
SOZp f [(X--X) 2 +(y-y) 2 +z 2V 1 2 dydx

a c -- - - (x-a) y - Y
a b-. dydx

f b a (b--a)

S2 / 2 2]/2
JaP E X -X) + b b-a (x -a) -y)2+ 2111dx

Sb
Z pJ [(X-p) 2 +(---yp) 2+z 2]l 2 dx

+ i(x - XP)2 + ( - (x - a)_YP)2 + Zp/2 dx

- z [(x - x )2 + + ] 112 dx.

0 
0

Then it follows that

S6 5 zH 7

The evaluation of 17:

%

" 
a

p -a dxdy
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Integrating in the x direction first, one finds

17 -= J~yTYa 0~ [i(X -X')1 + (Y -P) + ~]2 dxdy

C

fc[( b-a yaP2+(_,2 21-"/2 d

N,.J L + [ __ YX)+-x )+ Y p + J dy12 y
i c Z

0Jc~yx) (-p 2 +,] 1  y

-. Therefore

*17= H3 - Hl.

The evaluation of 1,:

s=8 -ff dxdy.

a-p S

- Integrating in the y direction first yields

C

b + j(a XPyx)a +f [cx - P + Z p2  ]12 dydx

( b~c -a) x- - y- ) 2 + (Y]1/2 y 211/

Xj)2 + (y -Y)
2 + dy

Appndb IP

b '/[(X X,) + ( _ Y)2 222d



f+ 2 2 -1/2
[( _ (X)2 + _y,)2 + z ] dy

[(X Xp) 2 + ( C X yp) dy

18 = H 9 - H5 - H7

-. The integral I, contains the integral 110; therefore, we first evaluate 110 and then return

to 19. The evaluation of both these integral where arrived at with the help of a paper written

by Smith and Hess [1962].

The evaluation of 1I0:

ff110 +dxdy.

We set up a new cylindrical coordinate system with the origin at the projection of point p on

the local x-y plane, as shown in Figure 101. In this coordinate frame the integral over the area

of the triangle can be written as the sum of three integrals. The strategy is to integrate from

(0,0) to (bc), then from (b,c) to (a,0), and finally from (a,0) to (0,0) The first produces the inte-

gral over the area of the triangle described by the vertices 1-2-4, the second produces the in-

* *" tegral over the area of the triangle 2-3-4, and finally the third produces the integral over the

area of the triangle 3-1-4.
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(2) (bc)

dx

\(3) X

-~~~ (0,0) 0 )
R

( (4)

* Figure 101. Cylindrical Coordinate System and Variables (Xp1Yp)

As mentioned, the integral will be evaluated by using cylindrical coordinates with the origin

at the projection of the point of interest on the triangular elements local x-y plane. The posi-

tion vector can be written as the sum of the vertical component, z, and the position vector in

the local x-y plane, R The magnitude of the position vector written in the elements local co-

ordinate frame r is the quantity needed to evaluate 1, . This magnitude, written in terms of the

components of the cylindrical coordinate frame, is

2 = 2 2r =R +

The differential area, in the cylindrical reference frame is

dxdy = R dRdO

where 6 is measured from any convenient direction, in this case the negative local x axis. The

integral 1, can be written as

f f. r f f R2 2
S /R +z n
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where R has the range of values from 0 to the value along the edge of the triangle. The in-

tegral can be simplified by using

dr= R dR-"dr- .

2 2
R+ Zp

The limits of integration are when

R=0 r= z = IzP

and when

0 R=R r=r.

The integral can then be written as

110 = f drdO

f r(O) - I z, I dO

fr dO- Iz,, AO.

where AO = 21r if the projection of the point p lies within the triangle and zero otherwise. Then,

employing the strategy mentioned earlier, the integral can be written as

0=f rdO+f rdO+ rdO- zp ,,
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- -

where 0i is the angle measured from the negative x axis to the vertex as numbered in

Figure 101. The first of the these three integrals is evaluated. New notation is introduced as

follows:

R2 = R 2 +

R1+s 1 .

The new variables are defined in Figure 102, It follows that

X,.

:(x 2 ,, A

Figure 102. Variable Definitions

.R r=zp

where s, is a function only of 0 and R, is constant. The variable r needs to be expressed in

terms of 0 . This relation is found by letting

S,
* tan a -

Then

•1 1
2 da=- dsl.

Cos 2 RX R,

From Figure 102
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f where is a constant. Then it follows

d,, de

"" and

• '."d0 - c 2(% dsi .,.-R,

Ii From Figure 102

COS

C%"

."- dO = d s

'CC-i2

Z722

,R
dO - ds1.

2 2"

• The limits of the integral are changed to the new variable. The new variables are s, s,, when

,..'- 08, and s, s, when 0 0,. Then the integral is

,72+72 R,

S~:? Appendi IR 22
C'.

FromnFigur 1022

0

Theefre wenve cs i ngaiv R i aso naie T IS tainocr hn4i

larger~?l than 0 hs 1 i eaieolywe h epniua poeto sbyn h



R S12 ds,
f 2 2 2 12ds

R, 2 2 2 2 2 1/2 dsl.
S. 

(+,

The second integral is evaluated by substituting

t2 2 2= 1 +P

and

s1 = t tan 4.0
The integral becomes

2 2 112 2 V'(s12) tsec 2 d4
rdO =Rj (S +t + lizs (R 2 2 20)(t2 2- 2)1/2

01 ~(Sl) (R1 + t tan 4(ttan 4

R, if s 2 + t2)1/2 22 dss) sec 4 do
= s (s1 + ds' + RlZf (s,) (R+ t tan24),/2

Again changing variables, with

* u = sin 4,

the integral is

* 2-2"R S t2 -1/2 Rz (S 2) 2
,r dO 2R (s 4- + 2 U + - du

f." fU-

, -11ZP uSO, 2I

2 R2-n -i-+. . ]2 Si12 R P ) t /2 ( 2 ) 1/21
u(
S12

)R, IRn s, + /s1t /,+  R/\R, _ tan U(
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I

,S12 + (sl2 + R + z)/ 2 +R 1 I - sin tani

2+ 2 t an1 ]

I~\lE 2+R_21 2 _-tan 1 1 IzIl

S2 +R 1  (sf1 ±R 2 +z2 +) 1 /2

From Figure 102

R, In 1 + s x2 2 xJ 2y -1/ 4

For the standard triangle

X2 --= b Y2 =C

and therefore

2 2 (b - xP)2 + (C yp)2 + Zp2
S12 +R + zp=bx)±(-~

which by definition reduces to

2 2 2 2.
S12 +R +z= r2 .

In a similar manner

s2 +R 2 + 2 (xx 2 + 2  2

with

x =0 Y3 =0

2 2 2

S +R + Z = X2 + y2 + Zp
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2 2 2 2
s11 + R, + z2 r 2 .

Finally the first integral is

S1 2 +r 2  -1/ LZPI- -1 2 ~ tan-' -Z-I s'

."r dO= R, In 1  + sgn(Rl) zP tan-( z ' tan- 1

1sl + r, R1 I r2 IR, / rl "

Following the same procedure, one can show that

. s2+ r3  I0 r dO = R2 In 22 + sgn(R2)zp tan-' _ta )-n_1 zP s210- s21 + r2 f R2 1 r tR21 r2 ,

and third integral can be written as

rdO=R3 n S3 +r +sgn(R 3)izPi tan-( s32 ) tan-' 3

- SR31 r R31 r3

The next step is to express the so, in terms of the coordinates of the vertices. To begin,

we show that

s 1 2 +r 2  r,+ r2 +d,
s 11 +r 1 - r 1+r 2 -d 1

where

d= S12 -S 11,

. • This will be proved by showing the following is an identity

(S12 + r2)(r, + r2 - dj) = (S11 + rl)(r1 + r 2 + d).

S

It follows that
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s 1 2rl + s 12r2 - s12d + rr 2 + 2 - dr2 = s,1r, + s,1r2 + st ald + q + rr2 + dl.

By regrouping and canceling terms, one can obtain

2 2r2 - r2 = rl(sl - s1 2) + r2(s11 - s 12) + rid1 + r2d1 + d,(s1 2 + s11),

2 2

r2 - r= (S12 - s11)(S12 + s11),

It follows from the definitions of r and r2 that

R2 +S2 +2 R2 S2 2 2 2
R1 + 12 + 1 - 1 1 - = S1 2  S1 1

* which reduces to

2 2 2 2
12 S11  S1 S1 1 ,

thus completing the proof of

S 12 + r2  r, + r2 + d1

sl + r, r, +r2 - d,

In a similar manner it can easily be shown that

s22 
+ r3  r2 

+ r3 
+ d2

S2 1 + r2  2 +r 3 - d2

V.; J%

and

S 3 2 + r1  r! + r 3 + d 3

S $3 1 + r3  r 1 + r3 - d 3

Now to make the bookkeeping easier we let

I 5 r, + r2+ d,
Srl + r2
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Q2 In r2+r3+d2

Q 4 r3 + r, + d3
S,( {r 3 + r, - d3

.---,() ()J. Jlsgn(RI) tan-' zPl s12 _tan-' IzPl
IR , r2 IR ,I r"

J2= sgn(R 2) tan1( i -I --l -tan 1  
2[ \'.: 1R2 1 r3 IR2 1 r2

and

J 3 =sgn(R3) tan- 1 ( Izp S32 _tan-l( I S31
IR31 r, I R31 r3

then

r dO = R, , + R2Q2 + R3Q3 + I Z I(j + J2 +J 3 )

Finally the tenth integral is

0

1= R1 Q, + R2Q2 + R3Q3 + IZpI(J 1 + J2 + J3 - AO)

Now we return to the evaluation of 1,:

0

19 -J- fr dxdy.

.-.

The same steps are used as for 1,, the integral is then written as
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%,,

19 = - dO - sgn(zp)AO

s1r Zp R1

S s2+R V 2 2Ss2

i"2 Z 1___1
f S2 2 Z R 2s dS2

2 221/2

+' s 2 ZI R3 _ ds3 -sgn(zp)M.,,.... S, [s3 + R3 + Zp] /  R3 + S3 sg~p~o

To evaluate the first integral we iet

2 2 2

s I t tan Z.

and

s, t tan ,.

Then

2
-I . "s,2  Z_ _R, _ (S ) zpRt sec IP

[S 2 R2 2]1/ 2  R2 + 2 ds 2 2 ) 2] 1/ 2S, ,, 1t s +" R1 -i- , S1  = '(s,,) (R1  + t2 tan2 [t 2 tan24i t+ 1

- ~~ZPR, sec4' d.

'.(s,,) (R1  + t tan24)

This integral can be further reduced by multiplying top and bottom by cos24

* = zpR I 2d2 2
- P '(s,) (R2 COS2 + t 2 sinR )
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UN,,, ,,.

.:

'.

2) cos P
Zp~ 2 2 2 2 d• ," ,, "(S,, (t2  R2) sin2 + R,

Because

t 2 R= 2

the integral is

- r7
- t cos sin2 d-.

Lp I) 
Z p J

Again changing variables by letting

u = sin

one finds that the integral becomes

R,-S2 + R, du

* R 1  IZz [ - P zl- 1 s 12
"" " tan - ' sin(tan -  )II

z R, S12 zP S1•F--. ( __ _ _ _ _ ( I
sgnlz.) sgn(RI) tan - R1  (S2 + R2 + _ tan_ I S 1/2...?." IR i (12 + R 2 + P 

2 i li (2 +z ) /

= sgn(zp)J1 .

The same procedures can be followed to show
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.,,

S p R2 sgn(z)J 2
2 +, [s+R 2 +z] / 2  R2 +s S

-p.

and%

S32  zpR 3

Is + R3 + Zds 3 s(z)J 3 .

Therefore, the ninth integral is

19 =sgn(z)[J1 + J2 
+ 

3 -AD].

0:t All the integrals have now been evaluated. Before recapr .: the results, we write the

constants defned in integrals Is and 1 in terms of the coordinates of the general triangle. For
this purpose, one side of the triangle is examined in detail. This side is shown in

Figure 103.

S 1 2  C'de1

S 1e
11 /i(x1 ,y / f2 S I

,-..< y 1 -y

Figure 103. Side One of the Triangle
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3-.

From Figure 103, it follows that

%- 2

d, =[(x2 - x) + (Y2 -

= [b 2 -C2]112.

Designating

C, Cos y X2 -XI b

Y2 -
=  

.I

S1 = r Y,d, d,

one can in turn be used to define s1, again from Figure 103

$1 S

C= or k1 -

and

(x - x) + k1;.- ' -' tan )
,. "..(y -- yp)

then

SS

(xn - x) +

C1  CY~

%- . or

SI(y - yp) - Cl(XP - x) = S1 .

Therefore,
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S12 = CI(x2 - xP) + S1(y2 - YP)

=C(b - Xp) + SI(C - yp)

and

.- ".Sl = C, (X, - XP) + S, (Y, - Yp)
= C( -XP) + s,( yp)

a '.

In a similar manner the remaining si, can be written as

* d2 =[(x3 -x 2)
2 + (Y3 - Y2)]

1 2 = [(a - b)2 +c 2]112

x3 - X2 a - b
C2-=

d2  d 2

" , S 2 - -Y 3 - Y 2
yd 2  d2

S22 C2 (a - XP) + S2( - yp)

s2l = C2(b - xp) + S2(c yp)

and

d3= [(x - x3 ) z + (Y1 Y3)]112 - [a2 1 1 2  a

0X 1  X3
C3 - d 3

"'-""Y1 Y3
"-'- S 3  -0

d 3

S32 =-1(- xp) =Xp
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1 Next we express R1, R, and R, in terms of the coordinates of the vertices of the trian-

gle. It follows from Figure 103 that

(Y - Yp)
cos y =R,+k

k2 =S 1 tan y

and also

R, RC, + S, s,1  (y, - yp),

then

P, (Y, - Yp) S1

(y, - yp) S1  (X

= ~ ~ PC +x -Y x1 S1 - Y -y 1 C

1-S

=y -x -O) x2) I - (,- 2 )2

=(X'D - b1)S2 - (yp - c1)C
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S

and

R 3 = (XP - X3)S 3 - (yp- y 3 )C 3

= (xp - a)S 3 - YpC 3.

K5. Next, one can relate Q1, Q, and Q3 to the H, integrals by using the definitions stated

earlier.

s 12 + r2
"5, = sl1 + rl

.-

* b c'i". =~~( rn [b 2 + 211/2 (b-Xp) + b2+21/2 ....(c- yp) +r 2

[ b2 +c 2] 1 /2 (- E b2 + c 2]1 2 ( -yr) -4-r
2 +[b/2 2  -C2] 1/ 2

=I + (b -  
xp )  +  (c - yp)  +  r2  b2  +

ln C - c

b Lb2 + c2]1/2
xpT-yp+r l

2 + c
C (Xp+Yp)

{r2 (3 + a X
In

- 4.

Therefore,

Q,1 = 3 H3.

2 I~=n- S22 +r 3
'("-"S 2 1 + r2
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i I
a b (b -x)-C Pr + a-b ... .... c( . .

[(b[(a - b 1> -b+C1 P

[(an- r + + (2a'b1) + a] b C - Yp) J

InC +

I [(a - b) 2 + c 2 ] 1/2  a_-_b
fr2 c + - (b - p) - (c - yp)

~Ilb a- a-b -b bp-a }" = In . .. . . .

, r2 , +b( )-a( ) )+a( c )+( c )xp'c+Yp

SInr 31'7 - 2

{r. V-a b-a (b- a)2
r21 + (x - a) c )Yp c c

A ,
Inf { r3.ja, - 2

r2 J 1 7-cL2 C9Cal

which previously was shown to be

In r3 ,fz1  - 2 In 1 r 2 + C

r2 a- -a2 -cal 3I r3 + 2

Therefore,

Q2 = a1 H1.

Finally,

3=n 
S 32 + rl

Q3 In S31a +r 3

I
"- - xp-ar 3 f
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.

Therefore,

Q3 H9.

The last topic before recapping the results of this Appendix is to check some results

*that were presented by Smith and Hess. They assert that

17 = S1Q1 + S2Q, + S3Q3.

Using the definitions of each variable, one finds that

S. -
[b2+c]3 1

-C -• . S2 = -c_-__
.;;':]; [(a -- b)

2 + C211I2 =

S3 =0,

.. g.-.Q , = 3 H3,

and

Q3 H9,

-" ~~*Vone finds that the integral 17 is

:-~ -i 17 = = H3 - H1

: t. which was obtained earlier. Also they state that

18 = -C 1Q1 - C2Q2 - C3 Q3.

0
- - Using the definitions
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, b b I

[b2 +c 2] 1 /2  C 1 ,

C2 a-b a-b 1
[(a -b) 2 + c21/2 C '

and

C3 = -1

one can show the integral Is is

C c T 3 +H

which also checks with the results presented earlier.

Next we review the results obtained in this Appendix. The velocity components are

V,[ yyl(a 1l3 +bl6+alxplg+blypl9 +l)X = 4T
+ yy2(a 2 3 + b216 + a2xpl9 + b2YPl)

" yy3(a3 3 + b316 + a3Xpl 9 + b3ypl9 )]

"*; :" ., vy = - [ l(a113 + b 16l + alxpl + blypl + a1)
+,(~al+ +x2(a +2 1 6 a2Xp 9 +- b2Ypl9)

r'= .. +Yx3(a313 + b316 +a3xpl9 + b3yplg)]

'-'"-and

• V~~~z= -4, [ y~11+bl lpl7 + byp'7 + 17 + alt,0)

- yxl(a,12 + b,15 + alxpl8 + blyPl8 + 18 + b,11 o)
+ yyv2(a211 + b214 + a2xpl? + b2YPo17 + a2110)

- YX2 (a2l2 + b2 15 + a2x.l 8 + b2yrl8 + b2 110)
+ yy3(a 3l1 + b314 + 33xPl7 + b3yl 7 + a3110)

- yx3(a3l2 + b315 + a3xpl 8 + b3.ypl8 + b3110 )],

Appendix i 242

% %



where

11 (xp -a)H +( a b ) H2 - xp H3 +  H4

12 = yp(H1 - H3) + H4 - H2

13 = zp(H 1 - H3)

14 = xPH 5 - H6 + xPH7 - H8 +r 3 - r,

15 =ypHs - c H6 + EYP + a R7 b -a H, - y pH 9

I 5= b b- - a [b -b-

16 = zpH5 + zpH 7 - zpH9

17 = H3 - H1

18 = H9 - H5 - H7

19 = sgn(zp)[J1 + J2 + J3 - Ao]

110 =R 1 Q + R2Q2 + R3Q3 + IzPI(J 1 + J2 + J3 - A6)

.,, =" O

ITi .:.. .H2 V2 ( r3) - 2 H,

H3

.' I 3=

H, [ ~ r2 - r,] + c(4 H3
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0

H5 = -H3

* ~~H 6. = -i- (~r2 - r1) + -- H1

H7 = a-cb H,

H8 = 1 [r 3 -r 2 ] + -8H 7

H9 = Q3

a~(-b )2+

b -- a

b
2 + c

2

c2

0(4 cxp + yp

()+ 

=C Xp + YP

c 2
0 OCX7 =+ -a

X (c ) 2+8P b - a a'

0 2 2 2 2

r, 4 Xp yp Z
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22 2

r2 (b -xp) 2 + (c - yp)2 + z

r 2 (a-XP)2 +y 2z2

n r, + r2 + d
r" + r2 - d,

Q2 =i{ r2+r3
+ d2}

+ r2+r3_d2

Q3=In r3 + r l + d 3

J= sgn(Rl) tan-' Lzp2 tan- r,( R 1I 2tR 1 I r R

J2= sgn(R2) tan-( Izp- s2 2 ) tan- 1 ( zp - 2
R 2 1 r3 I R 2 1 r2

_____ I p S31J3 sgn(R3) tan-' z _ tan-

J R3 I r, I R3 1 r3

d, = [b 2 +C2 ]1 /2

d2 = [(a- b)2 + c2 11 2

d3 = [a 2]1 / 2 -a

0b

C a-b c
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•i

C 3 = - 1, S3 = 0

R1 = xpS1 - ypC 1

R2 = (xp - b)S2 - (Yp - c)C2

R 3 = (xp - a)S 3 - YPC3

S12 = CI(b - xp) + Sj(c - yp)

S1 = c(- xP) + Si( -

S22 = C2(a - xP) + S2( - YP)

s21 = C2(b - xP) + S 2(c - yP)

S32 = C3( - xP) + S3 ( Yp)

S31= C3(a - xP) + S3( -YP)

1.3 Numerical Singularities

The general triangular element, is always oriented with the longest side in the positive

local x direction and the third vertex in the positive y direction. There are only three possible

areas where numerical problems could arise. These are on the planes containing the edges

of the triangles and perpendcular to the element, along the edges of the triangle, and on the

surface of the triangle. Each of these areas is discussed in detail below.

First the planes containing the edge are examined. The reason there is a numerical

problem on these planes is that the R, are identically zero, and these appear in the denomi-

nators of the J,. It follows from the definitions of the R, that the conditions for them to be zero

are.
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1) For R, = 0 xP = b yp

2) For R2 =0 x,=-(y-c) (ab)+b

3) For R, = 0 y,=0

These planes are shown in Figure 104.
'

-'po

Figure 104. Planes of Numerical Singularities

Case 1, where R, 0, is examined in detail below. The factor R, is zero on the plane

* described by

The only term with R, in the denominator is J,: therefore, this is the only term consid-

ered The J, is determined by evaluating the limit as the plane is approached and setting J,

at this limit on the plane. The limit is written as
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I im J1  Itim sgn(Rl ta-( LZI sR 1  2 )-a-( 1R1  r1--Ll)
A - A R 2IIr

XP C ' XP CYP

- im sgn(Rl) lim Itan-1 ( PZ1 _12 ) tan 1  I ZP 1 1

-LX R, I r2  /R 1R1 rl

The first factor is

tim sgn(Ri)= b -

The second factor is

S (ZPI _12 N - IzPISlN
Jim tan-' -tan -, ( LII =

ta[- I li P1s2 -tan-[ tim ( 1z~ s11N
l Lm\R 1 r2  ... iz IR r,

Because

S12 =(b - XP) b+ (c -yp) --
and

r2  [(b - x )2 + (C - )2 ZV2

the first limit can be expanded as

i zoi S12 >1IzP1 S121* tm =L lim - im
1 Rj r2  -Ly (b X2+ C Y2+z 2]/ b 1R11
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%0

the first of these limits is positive and finite except where x, =b, y,=c and z, 0. This

singularity will be examined later. The limit is written as

A.' ( _12

lim j2 k li

'

".- where k, is positive. The definitions are used to write this limit as
'-,I

rn _(b - xp) "±L + (c - Yp)
S12 - lim

,,,, -L IRl I X.P~ b
,C P C P d, P - -d

-" (b - xp)b + (c - yp)c
= lim

L I cxp bypC_,yp

lim (b- xp)b + (c- yp)c
b

lim Jcxp-bypI
xp Yp

The line x =b, yp= c and z. #0 will be discussed later. The denominator is always positive,

the sign of the numerator is

2, 2 b2

l lim (b-x,)b+(c-yp)c=b2  c b c )y p

2 2 2 2 Yp=b +c (b 2 +c 2)-

k2  yp > c

0

where k2 is positive. Because the denominator tends to positive zero the first limit is
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..,,, y < c

lim tan - ( IZpM C

,-.- .- ,2undetermined y = c

% Because

R, d,- dyp,b

':-'1- - -x P yp

0 and

r, - 2' 2 +z2]1/2,

the second limit is

XP-.TYPK 1  1  S1 1
. l im = lim limb] Y IRII r, XP [ x2+ Y2 + 21l12 0 ~ l

XP o" C y Xp.* p y p-'' Xp'- t' yp

The first of these limits is positive and finite except where xp 0, y= 0 and zP =0. This point

" ~. is discussed later. The limit is written as

"n s- k, = k1  lim

where k, is positive. The previous definitions are used to write this limit as

% X

bx bcAppndi 1 lim
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X C -P Xpo -bypc
= m -xb--yPc

,,~X - I x
t b b

, lrn --xpb -ypC

C. Y

lim I CXp - byp
.~~ xP YP

The line xP 0, yp = 0 and z, = 0 will be discussed later. The denominator is always positive,

the sign of the numerator is

b2
- b

, . -"lim --xpb - ypc = - yp - cyp

p-( 
+C p

0C

.'. 
y

S+k2 YP < 0

2 Yp > 0

where k2 is positive. Because the denominator tends to positive zero, the second limit can be

eval,.ated as

.2Yp < 0

, ,,a,- - 2 YP > 0""~~Y "" Ii a -

undetermined yp- O

-The total limit is determined by approaching the plane from both sides. The limits, as each

* side is approached are

6% " lim (JI - AO)= 1( ))2,, 0 <yp < c2 2

--- L ))-0 YP< 0
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,'S

and

, -. ~ ~ -l- -(--)- y>c

lim (J - ASO) = 1(- (--'))-0 O<yp<c
b2 2

The limits are the same approaching from either direction. The quantity used in evaluating

the velocity on this plane is chosen to be

J 2 + J3  yO > C or yp<

(Jb 
+ 

J2 
+ 

J3 - AO) J2 
+ J 3 - 0 < yp < c

XP = c-- undetermined Yp = 0 or yp = c

Case 2, where R2 =0 is determined in a similar manner. The singular component of

the velocity calculations on the plane described by

(b - a)ix,, - C Y,, + a
R~

is

J1 + J3 yP > c or yP< 0

lim (JI+J 2 + J3 - 0 )= d1 +J3- 0 <Yp<c
.. Xundetermined yp =0 or yp= c

a,-'.

-- where
0

(b - a)
, XYP +a.

Case 3, where R3 = 0 is now determined. The singular component of the velocity calculations

" - on the plane described by

".."

"' yp 0
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J1 + 2 xp > a or xp < 0

im('J + 2 + J3 -A) =J + J2 -T 0 < xp < a
,-' undetermined Xp = 0 or xp = a

The lines where the limits where classified as undetermined are now examined. These

. J. lines are described by

Xp= 0  yp= O  Zp/O,

xp b yp= c zp ,

and

X. Xp=a yp= 0 Zp 0.
• '.'.

The first line segment has both J, and J3 undetermined. The limit as this segment is

approached is

lim (J1 + J2 + J 3 - ) = lim (J1 + J 3 -AO) + J2

xP --0 _Vp -0
yp -0 yp -0

where

J, J1sn(R1ta-( __ s) tan-,( IzPI

and

sgn(R3 j taI r, r-3an
R 3  J I R3

The above limit is evaluated by changing to cylindrical coordinates with the origin at (0,0,0).

The point of interest is then written as

Appendix I 253

S po



x = r cos 0

Yp = r sin 0.

and the factors needed to evaluate the limit are

R= r cos 0 --- - r sind-

b c

S1 2 (b - r cos 6) - + (c - r sin ) "d1

and

r2 = [(b - rcos 0)2 + (c - rsin 6)2 + z 2j112.

The limit

/IZpI S12
Ii

has no upper bound because I zPI > 0, I R, > 0, s,, > 0 and r, > 0 in the limit and R, is the only

.... quantity tending to zero; therefore,

.. limtan_1  IzI s2 _2

' r-O JR1 I 2  2

The same cylindrical coordinate frame is used to evaluate the velocity along the second line

segment. The factors needed to evaluate the limit are

R3 = r sin O

= r cos 6 -a
S3

0)2+"' 2 ljj2

r3 = [(a - r cos 6)2 +(r sin 0)2 + zPJ .
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N The limit

/ ZP1 S31

lim -
~'.*, R3 1 r3

has no lower bound because zpl >0, I R > 0, s,1 < 0 and r3 > 0 in the limit and R3 is the only

quantity tending to zero, therefore

*.1 ZPI S31  _

limtan- L _ -
r-O IR3 1 r 3  2

The remaining factors of J, and J3 are

-. 1 tan - )-ir<O<tan - -- )

Jim sgn(R,) -1 tan-'( ) < 0 < tan-'( b ) + ir

undetermined 0 =tan--) orO =tan-1 (-2-) + ib b

which is

1 O<0<?r
Jim sgn(R 3)= -1 - 7 < 0 < 0 ,

. r-O undetermined 0 0 or =r

jim ( zP 2 Zii J=Izim Jimr.-:: i i R, j r, r-o Er 2  z2"]1/2 R- I

SP" J m - rb cos 0 - rc sin 0

IzPl r-.O rccos0-rbsin0l

* im - rb cos 0 - rc sin0".-." . im tan- 7r < 0 < tan--... r-O rc cos 0 - rb sin 0 -b b

im - rb cos f) - rc sin 0 tn' a-( +i

r-O rb sin 0 - rc cos 0 b b
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b cos 0 + c sin 0 tan(-1)c -1r < 0 <tan--
bsin 0-c cos0 b b

_ b cos 0-c sinb
cs-sncosO-b~sinO tan-l(2- )<0< tan-l- " +

undetermined 0=tan-l(--) or 0 = tan-(-2-) + ir

and

____Z _!32 IPIm r cos 0
r-O (R 3  r1 r-O Er2 +z21/ 2 r-O Irsin0l

"-_ Izpl cos9
IzP I I sin0l

cosa 0<<
sin 0

Co. - cos <0<0
sin -

undetermined 0 0or 0 = ir

The above limits are evaluated by examining five regions: 1) when

0<0<tan-i( -- )

liM(J 1 + J3 - A0)=
r-O

bcosO+csinO ctan-( Cos0 21r,

1sian nOo) +1 sin- 2'

2) when

tan-I(--) <0< t

lirn(J + J3 -
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SI

~-= tari( b cos 0+ csin 6 +1[ [tan-' ( cos '

V

2 ,

3) when

• ,tan-l(-E - ) - < 0 < 0

NpIM(JI + J3 -AO)=
r-.o

bcos0+csinO )] [tan-( cos 0.,'."-( b-i-O-ccosO sin 0 - -2 )

* 4) when

-ir <0 <tan-!(---) _

Iim{J1 + J3 -AO)=

b .%"'" 1( /] [ s l-s- ]
r"rrbco 0+c in0co". --- tan - 1  - tan- '( Cs2' .' c cos 0 - b sin 0 sin 0 2

.a

and 5) when

-. 0=0 O= 0=tan-l(-2- ) 0=tan-'(C)+r.

b b"

p...-. +im J3 AO)

r-O

is undetermined. Because

tan x - -tan -
2 X

t tan-' COS atan( )sin 0 2Cos 0
sin 0
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tan-'( cos6 e ) Otan n sin

tan-'( - cos - -E-- tan-'(-tan6)

tan-( Cos0 +~~sinO =-0 +2

and

tan-x = - tan-( - x)

these limits are numerically equivalent for all values of 0 except where it is undetermined.

This undetermined region is not a problem because for a continuous function the limit is in-

dependent of the path. Thus, any direction can be chosen to find the limit. The direction is

chosen to be

2'

then the limit is

IN- c ' I r1

lim PJ, +J2 +J3 - 8) =J2 + tan-l--- " - ) + -
x, -0b 2 2

y -0

or
•- c

"- 'Jim(J 1 +J 2 +J 3 - iO) =J 2 -tan
px -0b

.PY -0

The second line segment, describe by x, = b, y, = c and zP #0, can be evaluated in a

similar manner resulting in
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lim (J 1 + J 2 
+ J3 - ) =J 1 - tan-( )

xp -a a-b
yp -. 0

The third line segment, describe by x, = 0, y, = 0 and Zp * 0, can also be evaluated in

a similar manner resulting in

I'M' Pia J + IJ2 + J3 AO) =J3 + tan- '(, 2- -- a-'

yp --c

The induced velocity is now defined for the entire space except on the edges and on

the surface of the element. The velocity is only needed at the vertices and on the interior of

* the element. The velocity is needed at the corner points to convect the wake away from the

wing. Because the triangles are planar elements and the induced velocity is in a direction

perpendicular to the plane the only nonzero component, of the induced velocity, is in the local

z direction. The velocity in the z direction is

Vz= -- [ yyl(all1 + b,1 4 + alxpl 7 + blypl7 + 17 + a1110 )

- Yxi(al 2 + blls + ajXpl 8 + blypl 8 + 18 + b1110 )

+ Yy2(a 211 + b2 14 + a2Xpl7 + b2ypl 7 + a2 110)
- y ,2(a2l2 + b215 + a2xl 8 + b + b2110)

+ yy3(a 3l1 + b3 14 + a3Xpl 7 + b3ypl7 + a3110)

- Yx3(a312 + b31s + a3xpl8 + b3ypl 8 + b3110)].

At the point x, =0, yp =0 and z, = 0, the limits determined previously have remained unde-

termined because the Q, are undetermined. The Q, can be evaluated by changing to spherical

coordinates with the origin at the point (0,0,0). First, by definition

fr, + r2 + d,
lim Q1 = lim In '
r-0 r--0 r1 + r2 -d

Because r, is always larger than d, as the corner is approached this limit tends to positive

infinity at a logarithmic rate. Second,
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lim Q2 =II i n r2 +r 3 +d 2
r-.O r-O r2 +r 3 -d 2

which is

b.2 + C2 1/2 + a + [(a - b) 2 + c 2 ] 1 2

in (b2 + 2)1/2 + a - [(a - + C2]1 /2

Third,

'L Q3= L n{r3 + rl + d3 t

lm =lim In -3 1 d3rQ3 r-O Ir 3 +r 1 -d 3 '

Because r, is always larger than d3, as the corner is approached this limit tends to positive

infinity at a logarithmic rate.

The I, are defined by neglecting all terms where Q, is multiplied by xp, y, or zp, because

r goes to zero faster than Q, and Q3 go to infinity. The integrals needed for the induced velocity

are

1 , -aH + )a -b (r2 rl) ]

b-
1 12

i:".l,= -- (r2 rj) --- (r3 - r2) - - H, r 3 - r ,

12 - --5 (r2 - rj) - - (r3 - r2 ) - h- +  
1

0 5 b 015 -(7 -r 2

and

.. 10 lim R2Q2
,..r-"
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0

ac,., .. , d2~ 2

-. This leaves the terms in which 17 and 1, appear in the velocity equation without being

multiplied by xP, yp and z, . These only appear in the terms involving y, and Y,,. These terms

are truly singular, in that the induced velocity is infinite. These terms are neglected because

the influence of elements that join at a node will cancel because they have the same vorticity

at the shared node. The total induced velocity of an element on itself at the point (0,0,0) is

defined as

- Z, V = 0
0,

0=

and

Vz= - [ y2(a 2l1 + b2 14 + a2110)

1 - y,2 (a2l2 + b2 15 + b2110 )
l + Yy3 (a3l1 + b3 14 + a3110)

. Y3(a 3 l 2 + b315 + b3110)].

In a similar manner, the velocity induced by an element on itself at the point (a,0,0) is

defined as

""', V x = 0

0X

and
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1%

= E yy1 (a11 + b1 14 + ao110 )

- YX1(al 2 + b115 + b1110)

+ yv3(a 3l1 + b 314 + a3110 )

mX3 (a 3 l 2 + b3 15 + b311 0)]"

where

%

11 12= H4 - H2

:?. ,14 r3 - r, - (r3 - r2) + arts - H6
c c1

.'.

15 - - H6 -b -a (r3 - r2)

and

110 = R1 Q 1.

Finally, the velocity induced by an element on itself at the point (b,c,0) is defined as

V,
= 

0

,''*. V = 0

SV/= 0

and

Vz= - [yyI(a111 + b,1 , + al110)

- -(a,1 2 + b1 15 + b1110)

-+ 'y 2(a212 + b2 14 + a2110 )

- YX2(a312 + b215 ± b 211 0 )].

,where
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1 a-b1 b
c V1 (r2 -r3) - c 3 (r2 

- rl )

=1 1L12 =- V2r)-.,V 3
l4 --- (r2 - rl)--- (r3 - r2) + (r3 - r1)

c= (r2 - r C) - a (r3 - r 2) -cH9
15 b a5 b-a '

and

110= R3 Q3.

The final area needed to complete the evaluation is on the interior surface of the ele-

ment. The induced velocity is needed in this area for the no-penetration conditions. The ve-

locity on this plane must be perpendicular to the sheet; therefore,

V, =0

Vy=

and

Vz= [ 1(al I + bl14 + a X l7 + bIYOl 7 + 17 + a1l11o)

- _/ 1(al12 + bl 5 + ajxxl 8 + blyl 8 + 18 + bl 1 0 )

+ iy2(a 2 1 + b2 14 + a2xPl7 + b 2yl 7 + a2110 )

- rx 2 (a 2 12 + b2l5 + a2xpl8 + b2YPl 8 + b2 11 0 )

4- y, 3 (a3 l1 + b,14 +. a3xPl7 + b3ypl7 + a 3 110 )

- ix3(a3
1 2 + b315 + a3xPl8 + b3ypl8 + b3l1 0)].

Because V, does not contain 1, ( tie only integral not defined on the interior f the triangle

when z, = 0 the velocity is completely defined by the above equations,
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I The velocity induced at any point in the three dimensional space is known. The only

, .. exceptioni is along the edge of the triangle. The velocity induced at the corners has been

, . defined. The complete listing of the subroutine to find the induced velocity, including the limits

developed in this section, is presented in the next section.
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1.4 Subroutine VELE
V

.J. C CCCCC C CCCCCC CCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C
C C
C VELE C
C C
c c
C THIS SUBROUTINE FINDS THE VELOCITY INDUCED BY A VORTEX SHEET C
C AT THE POINT XP, YP, ZP. THE VORTEX SHEET IS A TRIANGULAR C
C ELEMENT. THE METHOD OF CALCULATING THE VELOCITY IS TO DEFINE C
C A LOCAL COORDINATE FRAME WHERE THE LOCAL X AXIS IS ALONG THE C
C LONGEST SIDE AND THE TRIANGLE AND THE Y AXIS IS SUCH THAT C
C THE OTHER VERTEX OF THE TRIANGLE HAS A POSITIVE COMPONENT. C
C THE TRIANGLE VERTICES ARE (0,0), (B,C) AND (A,O). THIS C
C ASSURES A>O, B>O, C>O AND A>B, ALSO THE TRIANGLE WILL BE IN C
C X-Y PLANE. ONCE THE COORDINATE SYSTEM IS DEFINED THE VELOCITY C
C DUE TO SIX BASIS FUNCTIONS WILL BE CALCULATED IN THE LOCAL C
C FRAME FROM THE CLOSED FORM INTEGRALS. THE SIX VELOCITY C
C VECTORS WILL THEN BE TRANSFORMED BACK TO THE ORIGINAL FRAME C
C BEFORE RETURNING TO THE CALLING ROUTINE. C
C C

* C THE SIX CASES OF BASIS FUNCTIONS ARE: C
C C
C CASE1 --- VORTICITY IN THE X, MAGNITUDE OF 1 AT (0,0) C
C CASE2 --- VORTICITY IN THE X, MAGNITUDE OF 1 AT (B,C) C
C CASE3 --- VORTICITY IN THE X, MAGNITUDE OF 1 AT (A,O) C

,- .'C CASE4 --- VORTICITY IN THE Y, MAGNITUDE OF 1 AT (0,0) C
-.'.C CASE5 --- VORTICITY IN THE Y, MAGNITUDE OF 1 AT (B,C) C

C CASE6 --- VORTICITY IN THE Y, MAGNITUDE OF 1 AT (A,O) C
C C
C THE INPUT VARIABLES ARE: C
C C
C XP --- X POSITION OF THE POINT OF INTEREST C
C YP --- Y POSITION OF THE POINT OF INTEREST C
C ZP -- Z POSITION OF THE POINT OF INTEREST C

C YNODE --- Y POSITION IN THE BODY FRAME OF NODE(IDENTEI) C
C ZNODE --- Z POSITION IN THE BODY FRAME OF NODE(IDENTE,I) C
C N(I,3)--- NODE NUMBER IDENTIFYING MATRIX OF ELEMENT IDENTE C
C IDENTE--- IDENTIFICATION NUMBER OF THE ELEMENT C
C AELE(I)-- A OF TRIANGLE IDENTE C
C BELE(I)-- B OF TRIANGLE IDENTE C
C CELE(I)-- C OF TRIANGLE IDENTE C
C DIRCOS--- DIRECTION COSINE MATRIX OF ELEMENT IDENTE C
C ABASE --- THE BASIS OF THE ELEMENT 1-3 ARE A SUB I C

* C 4-6 ARE B SUB I C
C FOURPI--- 4 X PI C
C C
C THE OUTPUT VARIABLES ARE: C
C C

- C VX(I) --- X VELOCITY FOR CASE I C
C VY(I) --- Y VELOCITY FOR CASE I C
C VZ(I) --- Z VELOCITY FOR CASE I C

* C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCC

SUBROUTINE VELE
IMPLICIT REAL*8(A-H,O-Z)
PARAMETER (ME=366,MN:216)
DIMFNSION VP(6),VQ(6),VR(6)
COMMON/VELINP/ XP,YP,ZP,IDENTE,NODE1,NODE2
COMMON/CONSTS/ FOURPIPI,CUTOFF,CUTWK

* COMMON/VELOUT/ VX(6),VY(6),VZ(6)
COMMON/ELDATA/ NELE,NODE,N(ME,3),XNODE(MN),YNODE(MN),ZNODE(MN)
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COMMON/CORNER/ AELE(ME),BELECME),CELECME),DIRCOS(ME,3,3)

COMMON/EBASIS/ ABASE(ME,6)

Nd C XPDUM=XP
YPDUM=YP
ZPDUM=ZP

C
C PUTTING THE POINT OF INTEREST INTO LOCAL COORDINATES
C

XNP=(XP-XN4ODECN(IDENTE, 1) ) )3DIRCOS(IDENTE, 1, 1)
+(YP-YNODECN(IDENTE,1)))3EDIRCOS(IDENTE,1,2)
+(ZP-ZNODE(N(IDENTE,1)))3EDIRCOS(IDENTE,1,3)

V YNP=(XP-XNODE(N(IDENTE,1)))EDIRCOS(IDENTE,2,I)

ZNP=(XP-XNODE(NCIDENTE, 1)) )3DIRCOSCIDENTE,3,1)
* +(YP-YNODE(N(IDENTE,1)))3EDIRCOS(IDENTE,3,2)

YP=YNP
ZP=ZNP

C
C COPING THE TRIANGLE LOCAL VERTICES INTO A,B,C
C

A=AELE(IDENTE)
B=BELE(IDENTE)
C=CELE( IDENTE)

C
*C THE INTEGRALS, FIRST THE PARAMETERS FOR I10

C
D1=DSQRTC B*B+C*C)
D2=DSQRT( (A-B)*(A-B)+C*C)
D3=A
C1=B/D1
C2=(A-B)/D2
C3=-1. 000
51=C/DI

S3=0.000
RR1= XP *ES1- YP *C1
RR2=(XP-B)*ES2-(YP-C)*C2
RR3=(XP-A)3ES3- YP 3EC3

S12=(B-XP)3*Cl+(C-YP)*ESl
S21=(B-XP)*C2+(C-YP)*S2
S22=(A-XP)*C2 -YP *S2
S31=(A-XP)*C3 -YP *3

*S32= -XP *EC3 -YP *S3
RI=DSQRT(XP*XP+YP*YP+ZP*ZP)
R2=DSQRT C CB-XP) C B-XP) C-YP) C C-YP )+ZP*ZP)
R3=DSQRT( CA-XP)*(A-XP)+YP*YP+ZPXZP)

'V DENOMI =R1+R2-Dl
DENOM2=R2+R3-D2
DENOM3=R3+Rl-D3

C
*C SEEING IF THE VELOCITY IS TO BE CALCULATED AT A SINGULAR POINT

IFCBCEO1.TCTF.R
N; . DABS(DENOMI).LT.CUTOFF.OR.

V . DABS(DENOM3).LT.CUTOFF)THEN
DO 10 I=1,6

VPC I )0 .ODO
VQ( I)=O0.000

* VR( I )0 .00
10 CONTINUE

IF(DABS(XP) .LT.CUTOFF.AND.
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DABS( YP )LT.CUTOFF. AND.
DABS ZP ).LT.CUTOFF) TNEN

C
C FOR THE CORNER XP=O, YP=O AND ZP=O

-~ C

Q2=DLOG( (R2+R3+D2)/DENOM2)

C DEFINING THE ALPHA PARAMETERS FOR THE H'S
C

ALPHAI=( CB-A)3((B-A)+C*C)/(CC)
ALPHA2=C CB-A)/C)3EA
ALPHA3=(B*B+C*C)/CC)
ALPHA4= . ODO
ALPHA5=(C3EC+B*B)/CB*B)
ALPHA6= . ODO
ALPHA7=((B-A)3((B-A)+C3EC)/( (B-A)3E(B-A))
ALPHA8=A3*(C/(B-A))*(C/(B-A))

C
C NOW FOR THE H'S
C

Hl=Q2/DSQRT(ALPHA1)
H2=( R2-R3)/ALPHA1-ALPHA2*EHl/ALPHA1
H4=(R2-Rl)/ALPHA3
H6=(R2-R1 )/ALPHA5
H7=(A-B)iEH1/C

* H8=(R3-R2)/ALPHA7+ALPHA8EH7/ALPHA7
C
C FINDING Il THROUGH I10
C

AINT1=-A*Hl+( (A-B)/C)*H2+B(H'/C
AINT2=-H2+Hi
AINT4=-H6-H8+R3-R1
AINT5=-C3*H6/B+(A3*C)/( B-A)*H7-C3EH8/(B-A)
AINTi O=RR23EQ2

C
C COPYING THE BASIS CONSTANTS INTO Al THROUGH B3
C

AI=ABASEC IDENTE, 1)
A2=ABASE( IDENTE, 2)

Bl=ABASE(IDEtNTE, 4)21 B2=ABASE( IDENTE, 5)
B3=ABASE( IDENTE, 6)

C
C NOW THE VELOCITY COMPONENTS, FOR CASEl
C

VP(1)=o . ODD
VQ(1)=0.ODO
VR(l)=O.ODO

* C
C FOR CASE2
C

VP(2)=O. ODO
VQ(2)0 . ODD
VRC2) =-A23*AINT2-B2*AINT5-B2*EAINTIO

C
C FOR CASE3

* C
VP(3)=O.ODD

* VQ(3)0 . ODD
VR( 3) =-A3iEAINT2-B33EAINT5-B33EAINT1O

C
C FOR CASE'.
C

VP(4)=O. ODO
* VQ(4)=O .ODD

VR(4)=O.ODD
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C FOR CASES

C VP(5)=O.ODO

V.VQ(5)=O.OD
FVR(5 ) =A2*EAINT1+B2*AINT4+A23(AINT1O

C

VP(6)=0 ODD
VQ(6 )0 ODD
VR(6 )=A33*AINTI+B33EAINT'4+A3*AINTIO
END IF
IF(DABS(XP-A) .LT.CUTOFF.AND.

DABS CYP ) .LT. CUTOFF. AND.

FR DABS(ZP).LT.CUTOFF)THEN

C FORTHE CORNER XP=A, YP=O AND ZP=O
C

41 N'Q1=DLOG( (Rl+R2+D1)/DENOMI)
C
C DEFINING THE ALPHA PARAMETERS FOR THE H'S
C

ALPHA1C (B-A)3*CB-A)+CEC)/C3C)
ALPHA2=0OO
ALPHA3=(BEB+C(C)/(C3EC)
ALPHA4=B/CEA
ALPHA5=(C(C+BiEB)/C B3B)
ALPHA6=A
ALPHA7=( CB-A)3ECB-A)+C3EC)/C CB-A)*(B-A))
ALPHA8=A+A3ECC/(B-A) )*(C/(B-A))

C
C NOW FOR THE H'S
C

H2=(R2-R3)/ALPHAI
H3=Ql/DSQRT(ALPHA3)
H4=(R2-R1 )/ALPHA3+ALPHA4XH3/ALPHA3
H5=BH3/C
H6=(R2-R1 )/ALPHA5+ALPHA6*H5/ALPHA5
H8=(R3-R2)/ALPHA7 __

C -. _ _

c FINDING Il THROUGH I10
C

AINTI=( (A-B )/C)*H2-A*H3+BEH4/C
AINT2=-H2+H4
AINT4=A3EH5-H6-H8+R3-Rl
AINT5=-C*H6/B-CMH8/( B-A)
AINT10=RR13*Ql

C
C COPYING THE BASIS CONSTANTS INTO Al THROUGH B3

C Al=ABASE( IDENTE, 1)

A2=ABASE( IDENTE, 2)
A3=ABASE( IDENTE, 3)
Bl=ABASE( IDENTE, ()
B2=ABASE( IDENTE, 5)
B3=ABASEC IDENTE, 6)

C
0C NOW THE VELOCITY COMPONENTS, FOR CASEI

C
VP(1)=O .ODD
VQ(1)=O.ODO
VR( 1)=-Al1EAINT2-B3EAINT5-B13(AINTIO

C
C FOR CASE2

* C
VP(2)=O .ODD

* . VQ(2)=O .ODD
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VR(2)=O .000
C
C FOR CASE3
C

VP(3)=0 ODO
VQ(3)0 . ODO

cVR( 3) =-A3XAINT2-B33EAINT5-B33EAINT10

AC FOR CASE4

VP(4Y=O: ODO

c VR(4) =AIXAINT1+B13AINT4+Al*AINT10

C FOR CASE5
C

VP(5)=O.ODO
VQ(5)=O .000
VR(5Y0 .000

C
C FOR CASE6
C

VP(6)=O .000
VQ(6)=O .ODO
VR(6 )=A33EAINT1+B33EAINT4+A33EAINT1O

* END IF
IF(DABS(XP-B) .LT.CUTOFF.AND,

DABS( YP-C ).LT. CUTOFF. AND.
DA BS(CZP).LT. CUTO FF) TNEN

C
C FOR THE CORNER XP=B, YP=C AND ZP=O
C

Q3=DLOG( CR3+R1+D3)/DENOM3)
C
C DEFINING THE ALPHA PARAMETERS FOR THE HIS
C

ALPHA1=( (B-A)*CB-A)+C*C)/(C*C)
ALPHA2=( (B-A)/C)*(A-B)-C
ALPHA3=(B*EB+C*C)/(C~c)

ALPHA5=(C*C+B3*B)/(B*B)
ALPHA6=B+C/B*C

ALPHA8=B+A3E(C/(B-A))*(C/(B-A) )+C*(C/(B-A))
C
C NOW FOR THE H'S
C

H2=(R2-R3)/ALPHA1
H4=(R2-Rl )/ALPHA3

0 H6=(R2-R1 )/ALPHA5
H8=(R3-R2)/ALPHA7
H9=Q3

C
C FINDING Il THROUGH I10

AINT1=( CA-B)/C)*H2+B*H4/C
AINT2=-H2+H,

* AINT'.=-H6-H8+R3-Rl
AINT5=-C3EH6/B-C*H8/(B-A)-CNH9
AINTi O=RR33EQ3

C
C COPYING THE BASIS CONSTANTS INTO Al THROUGH B3
C

A1=ABASE( IDENTE, 1)
A2=ABASEC IDENTE, 2)

* A3=ABASE(IDENTE, 3)
Bl=ABASE(IDENTE,4)

* B2=ABASE( IDENTE, 5)
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S7

B3=ABASE( IDENTE, 6)
C
C NOW THE VELOCITY COMPONENTS, FOR CASE1
C

VP(1)=O.ODO
VQ(1)=O.aDO

A ~R() -A13EAINT2-B13EAINT5-B13EAINTl 0

C

VP(2)=O.aDO
VQ(2Y=O.aDO
VR(2) =-A23EAINT2-B23AINT5-B2*AINT1O

C
C FOR CASE3
C

VP(3)=O.aDO
VQ(3)=O. ODO
VR(3)=O.aDO

* C FOR CASEi
C

VP(4)=O. ODO
VQ('.)=O.aDO

VR(4)-A13EAINT1+B13EAINT4+A13*AINT10

C FOR CASE5
C

VP(5)=O.aDO
VQ(5Y=O.aDO
VR(5) =A2*AINT1+B2EAINT,+A23*AINT10

C
C FOR CASE6
C

VP(6 )=O.ODO
VQ(6 )0 ODO
VR(6)=O .0Db

C END IF

C
ELSE

Q2=DLOG( (R2+R3+D2)/DENOM2)
Q3=DLOG( (R3+R1+D3)/DENOM3)

C
C SKIPPING THE LIMIT TESTS IF ALL THE RRS ARE NON ZERO
C

IF(DABS(RR1) .LT.CUTOFF.OR.
* DABS(RR2).LT.CUTOFF.OR.

DABS(RR3) .LT.CUTOFF)THEN
C
C FIRST IF RR1=0 RR2 AND RR3 NONZERO
C

IF(DABS(RR1) .LT.CUTOFF.AND.
DABS(RR2) .GE.CUTOFF.AND.
DABS(RR3) .GE.CUTOFF)THEN

* P2=DABS(RR2)/RR2*( DATAN( DABS(ZP/RR2)*ES22/R3)
-DATAN(DABS(ZP/RR2)*S21/R2))

P3=DABS(RR3)/RR33E(DATAN(DABS(ZP/RR3)*S32/R1)
-DATAN(DABS(ZP/RR3)NS31/R3))

IF(YP.GT.C.OR.YP.LT.O.ODO)THEN
SUMP=P2+P3

ELSE-P
SUMP=P2+P3-P

* END IF
END IF

C
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C SECOND IF RR2=O RR1 AND RR3 NONZERO
C

IF(DABS(RR1) .GE.CUTOFF.AND.
DABS(RR2) .LT.CUTOFF.AND.

.1. DABS(RR3) .GE.CUTOFF)THEN
Pl=DABSCRR1 )/RR13E(DATAN(DABSCZP/RR1 )3E52/R2)

-DATAN(DABS(ZP/RR1)ES11/Rl))
P3=DABS(RR3)/RR33E(DATAN(DABS(ZP/RR3)*S32/Ri)

-DATAN(DABS(ZP/RR3)*S31/R3))
IF(YP.GT.CO0R.YP. LT. ODO)THEN

SUMP=P1+P3
ELSE

SUi'PP1+P3-PI
END IF

END IF
C
C THIRD IF RR3=O RR1 AND RR2 NONZERO

CFDB(R)G.UOFAD
IDABS(RR1) .GE.CUTOFF.AND.

DABS(RR3) .LT.CUTOFF)THEN
Pl=DABS(RR1)/RR1*(DATAN(DABS(ZP/RR1 )NS12/R2)

-DATAN(DABS(ZP/RR1)*S 11/Ri))
P2=DABS( RR2)/RR2*(CDATANC DABS(ZP/RR2)*S22/R3)

-DATAN( DABSCZP/RR2)*S21/R2))
* IF(XP.GT.A.OR.XP.LT.O.ODO)THEN

SUMP=Pl+P2
ELSE

SUMP=P1+P2-PI
END IF

END IF

C IF BOTH RR1 AND RR3 ARE ZERO
C

IF(DABS(RR1).LT.CUTOFF.AND.DABS(RR3).LT.CUTOFF)THEN
P2=DABS( RR2)/RR2E( DATAN( DABS(ZP/RR2)3E522/R3)

-DATAN(DABS(ZP/RR2)3E521/R2))
SUMP=P2+DATANC -C/B)

END IF

C IF BOTH RR1 AND RR2 ARE ZERO
C

IF(DABS(RRI).LT.CUTOFF.AND.DABS(RR2).LT.CUTOFF)THEN
P3=DABS(RR3)/RR33E(DATAN(DABS(ZP/RR3)3ES32/R1)

-DATAN(DABS(ZP/RR3)*S31/R3))
SUMP=P3+DATAN(C'B)-DATAN(C/(B-A) )-PI

END IF
C
C IF BOTH RR2 AND RR3 ARE ZERO

* C
IF(DABS(RR2).LT.CUTOFF.AND.DABS(RR3).LT.CUTOFF)THEN

Pl=DABS(RR1 )/RR13(DATAN(DABS(ZP/RR1 )3S12/R2)
-DATAN(DABS(ZP/RR1)3*Sll/Rl))

SUMP=P1+DATAN(C/C B-A))
END IF

ELEPl=DABS(RR1 )/RR1IE(DATAN(DABS(ZP/RR1)3*S12/R2)
-DATAN(DABS(ZP/RR1)3E511/R1))

P2=DABS(RR2)/RR2*E(DATAN( DABS(ZP/RR2)3*S22/R3)
-DATAN(DABS(ZP/RR2)XS21/R2))

P3=DABS(RR3)/RR3E( DATAW( DABS(ZP/RR3)3E532/R1)
-DATAN(DABS(ZP/RR3)*S31/R3))

DTHETA=O.000
IF(RR1.GT.O.ODO.AND.RR2.GT.0.ODO.AND.RR3.GT.O.ODO)THEN

DTHETA=2. ODO3EPI
END IF
SUMP=P1+P2+P3-DTHETA
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END IF
C PUTTING TOGETHER I10 AND 19 FIRST THE LIMIT IF ZP=O

C IF(RR1.GT.O.ODO.AND.RR2.GT.0.ODO.AND.RR3.GT.O.ODO.AND.
DABS(ZP) .LT.CUTOFF)THEN

ELEAINT9=O ODO

IFCDABS(ZP) .LT.CUTOFF)THEN
AINT90. ODO

EL SE
AINT9=DABS(ZP)/ZP*SUMP

END IF
* END IF

C DEFINING TEALPHA PARAMETERS FOR THE HIS

ALPHA1=( (B-A)*(B-A)+C*C)/(CC)
ALPHA2=((B-A)/C)*E(A-XP)-YP

* ALPHA3=(BB+C(C)/(CC)
ALPHA4=B/C)EXP+YP
ALPHA5= (C3EC+B3EB)/( B3B)
ALPHA6 =XP+C/B3*YP
ALPHA7=((B-A)*E(B-A)+C3*C)/((B-A)*CB-A))

* ALPHA8=XP+A*(C/(B-A) )*(C/(B-A) )+YP3E(C/(B-A))
C
C NOW FOR THE H'S
C

H1=Q2/DSQRT(ALPHAl)
H2=( R2-R3)/ALPHAl-ALPHA2*Hl/ALPHAl
H3=Ql/DSQRT(ALPHA3)
H4=(R2-Rl )/ALPHA3+ALPHA43EH3/ALPHA3
H5=B3(H3/C
H6=(R2-R1 )/ALPHA5+ALPHA63EH5/ALPHA5
H7=(A-B)*EH /C
Hg=( R3-R2)/ALPHA7+ALPHA8*H7/ALPHA7
H9=Q3

C
-- - -* C FINDING Il THROUGH 18 -

AINT1=(XP-A)3EH1+( (A-B)/C)*H2-XP*H3+B*EH4/C
AINTZ=YP3EHl-H2-YP3*H3+H4
AINT3=ZPEH1-ZP3NH3
AINT4XP*H5-H6+XPNEH7-H8+R3-Rl
AINT5=YP3*H5-C3H6/B+(YP+(A*C)/(B-A))3EH7-C*H8/(B-A)-YP*H9
AINT6 =ZP*EH5+ZP*EH7-ZP*EH9
AINT7=H3-Hl
AINT8=-H5-H7+H9

* C
*C COPYING THE BASIS CONSTANTS INTO Al THROUGH B3

C
A1=ABASE( IDENTE, 1)
A2=ABASE( IDENTE, 2)
A3=ABASE( IDENTE, 3)
Bl=ABASE( IDENTE, 4)
B2=ABASE( IDENTE, 5)

C B3=ABASEC IDENTE, 6)

C NOW THE VELOCITY COMPONENTS, FOR CASEl
C

VP( 1 )=0ODO
* -. VQC1)=A13*AINT3+B13EAINT6+Al*XPXAINT9+Bl*YP3EAINT9+AINT9

VR( 1 )-Al(AINT2-B13EAINT5-A1*XP*EAINT8-B13EYP*AINT8-AINT8
-B13(AINT10

* C
C FOR CASE2
C
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VP(2)=O.aDO
- ., ~VQ( 2) =A2*AINT3+B2EAINT6+A2EXP*EA'T9+B2EYP*EAINT9

VR(2)=-A2*AINT2-B2EAINT5-A2EXP.A±NT8-B2*YP*AINT8-B23*AINT10

C FOR CASE3

VP(3)=O.ODO
*VQ( 3)=A*IT 3AN6A*X*IT+3Y*IT

VR( 3) =-A33AINT2-B33(AINT5-A33EXP*AINT8-B3*YP*AINT8-B3EAINT1O
C
C FOR CASE4
C

VP(4)= IAN3B*IN6A*PAN9BlY*IT-IT
V *4 OODO

VR(4 ) =A*AINTI+B1NAINT4+A1*XP*AlNT7+Bl*YP*AINT7+AINT7
* +A13EAINT10

C
C FOR CASE5

C

C FOR CASE6
C

* VP(6 )=-A3*AINT3-B3*AINT6-A3XPEAINT9-B33EYP*AINT9
VQ(6 )=O. ODO
VR(6)=3ANIB*IT4A*PAN7B*Y*IT+3AN1

END IF
C
C TRANSFORMING THE SIX VELOCITY VECTORS BACK TO GLOBAL
C

DO 20 I=1,6
VX(I)=VP( I)*DIRCOS(IDENTE, 1,1)

* +VQ(I)*DIRCOS(IDENTE,2,1)
* +VR(I)3EDIRCOS(IDENTE,3,1)

VX( I )VX( I)/FOURPI
VY(I)=VP(I)3*DIRCOS(IDENTE, 1,2)

* ~- *+VQ(I)*DIRCOS(IDENTE,2,2)

VZ(I)=VPCI)3*DIRCOS(IDENTE, 1,3)
* +VQ(I)*DIRCOS(IDENTE,2,3)
* +VR(I)*DIRCOS(IDENTE,3,3)

VZ( I)=VZ(I)/FOURPI
20 CONTINUE

C
C RESTORING THE ORIGINAL VARIABLES
C

* XP=XPDUM
YP=YPDUM
ZP=ZPDUM
RETURN
END
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Appendix II

Velocity Induced by a Variable Vortex Filament

11.1 Integral Equations
The velocity induced by a general vortex filament is

X +V~ ±V, + VW

where V. is the induced velocity and i j and k are the unit vectors of the local coordinate

, frame of the filament. The circulation on the filament, in the filament's local coordinate frame

"" the x-axis always runs along the filament, has the form

x2
I r(x) = G1 -k- + G~x + G3.

The velocity induced by a vortex filament can be written as

. 1f d/ x(r -s)Vc"j/") fT -'V a

* A vortex filament is shown in Figure 105.

From Figure 105

dT dx i.

and

"O '" p = r - s.

The cross product can then be expanded so that the velocity is
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%

p -C

* Figure 105. Coordinate Frame of a Vortex Core

Sdxjpj sin 0iJxr

PI Ii xrl

With the definitions

] p= p

and

J . x r

Li xr I

- " the induced velocity is

S

s inO -
C 4  J\ dxe.

The following variable substitution can be used to further expand the integral,
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sin 6-
V. P

where h is the perpendicular distance from the local x axis to the point of interest, and be-

cause

x =x-h cot 0

Then the integral becomes

= -I (x) h cosec 0 dOe,*C 41 h )
'sin 0

which can be reduced to

1 02 sin 0

4 61f(x h dOe.

where i is the distance from the origin of the coordinate frame to the point where the per-

'1 pendicular is measured, the velccity is

C 8"

+-h cot0) sin 0 dOe

0 G3 -02Jsin 0 dOe
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-±G 1 -2h 2 ,c~ ~ ~ O 0'-'[-[cs + In( tan- )] hk s in O0 - -K- c o C OJ 11
47h 22 2 0,

47th O,"'L'

The definitions of h and i" lead to the following expressions in terms of r and 0

2 -2 22 2 2h - , =r2 sin 1 - rl cOs0 1

r - -cos 20) - 1 (1 +cos201)

2 2

r2 cos 201,

hW = r2 sin 0, cos 01

= 2 sin 20,

and

- h( sin 02 - sin 01) - i'( cos 82 - cos 01) =

- 2 2- r( sin 01 sin 02 sin 01) - rl( COS 0, cos 02 - cOs 01)

2 2= - r(sin 01 sin 02 + COs 01 cos 02) 4- rj( sin 01 + cOs 01)

=r[1 - cos0 1 -02)].

The above definitions and the substitution

.k 1- cos 0

tan -2- sin 0

can be used to show that the induced velocity is
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G r 2 Gine 2 I n (1- COS 02) sin 01

41 4 1  2 r 1 (1 -cos 1) sin 022'-* + - r cos 28( coO ~ COS 02) + r1  sin 20( sin u1 - sin 82,)i-

+ - e[r(I - cos( 1 -0 2))]
." 

G 3

+ 4-" + E cos 01- cos 02]

The last term of this equation is the well known Biot-Savart law.

.11.2 Vortex Core Singularities
A. - The only possible numerical problems, occur when h goes to zero; h is zero along the

- x axis. Three distinct areas exist where h goes to zero. Two areas are outside the filament;

- the other is on the filament. The three regions are defined in Figure 106.

.

Y

- Figure 106. Regions of Numerical Difficulties

The variable substitutions

d, = [( + x)2 + h2 ] 1

and
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d2 = [x2 + h2 1 / 2

5-

5, lead to the sine and cosine terms being
-,

h h
sin 01  sin 0 1 =tPd, d'2

I+xx

cos 1 = Cos -" and cos0 1 - d2

5. where I and x are shown in Figure 107.

%X

.,. "VC

Figure 107. Definitions of New Variables

All three regions will be investigated by using a Taylor-series expansion of the sine and cosine

for small h. To second order, the expansions are

h h I
sin01- h2)1/2 -h if X_ 0

+hh 1
sine, , 2+ +-- Ai

_ h 17 + i <. I<1
IXI 2 2 /'
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h +0for <h <<1,

sin62 )2 h h2] 1/ 2

h 1 if (I - X-) 0Ssin h2 1/2

- i h < il -- 1

2( -_ -")2  +

"v" I h; +0( ( h--x. for h_- << ,

.%-..Cos 1 -- =sgn(jF) if x" 9k= 0

h 2

sgn(x 1 + 2 if I

= - 1 --iI [~ ~-x- i0fo I h 1<<1

, -.- •and

•~ CO02 I-h1/ sgn( -_ ) [  1 ] if(-X-) 0O

S, . 2 ( j ,£ 2 + h 2 1 2 2  
1 /2

02

.5%

nsgn(/-x) 1 4- if h h I
.os0 1 = i"+.) 2(/ - X
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= sn(- x) h +0 h -a for I < < 1.

Now consider

rm sIn 0 (1 - COS 02) sin 01

h i h (1- cos 01) sin 02

h 2  h

F2 +h 2 h2  2(1_+X-)2 j *
=lim In if i 0 or -I 0.h-0 h k2 h 2  h

2 ( + X)

It follows that, for # 0 or jF - #0,

%2.2 2". 2, -C O 2 s n 0
J r si 1 1 c 02) si }10.
h-0 h n cos 0) sin 2

... ' Now consider

_ 2

lim cos 201( COS 01 - COS 02)
-.o h

-2 2
m= urm (cos 201 - sin201)( cos 81 - cos 02)

h-0 h

.-= i + (1 hs sg -n('-() 1 -
h.:, . -- F 2 2 k2 2(jF _1)2

S if " # 0 or x - I : 0,

-=-mx2 + h2  0O(h 2 ) if sgn(,)= sgn(x -I)

'-0 h O(1) if sgn(x) = - sgn(.F - 1)

Therefore,
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ur r2 0 if sgn(x-)= sgn(iF-I)
,m _- -h-cos 201( cos 01- cos 02) if , 0 or j-I00.

n-o h ~oo if gn(xi) =-sgn(X -)

Now coisider

S-n sin 261( sin 61 - sin 02)

lim j2 + 2 2 cos 01 sin 6l( sin 61 - sin 02)

h-0 h

2lim + sgn(x-) 1 h-h
h-0. h 2X"2  jF ! I -

-0 if x' 0 0or i-/10 0.

Now consider

Shlim cos(0 1 - 02))

-2 
2

-im -X (1- cos 01 cos 2 - sin 61 sin 62)
h-0O h

-2 + h 2  
h 2  h h..= lin L - sgn(x-) sgn(Z- -- 1)

2  
-h-.O h 252  2(xl x-l

0

'30 Oif sgn(x)= sgnif -- 0or!- .
too if sgn(xk) - sgn(,x - I)

4,.'

* Suppose 5= 0

sin 1 =1, cos 01 = 0

h ISin 02 + h COS 02 =

(~~~~2~ h 21 2  ~
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r1 =h'J- ,

-r2 sin2 01 (1 - COS 02) sin 01

'a'Z,"lim Inco

'.-0 h (- s 01) sin 02

2 (( 2 )1/+
Iimh() In 0{h

Hr - [ 201( cos 01 COS 02) + sin 201( sin 01- sin 02)] 0h-o h

lirn I (1 - COS 01 COS 02 - sin 01 sin 02)1ILA.h-o h

and

lr i- (COS 01- COS 02)=~-oh

The same results are obtained when W'=1.

The results of this investigation show that all numerical difficulties encountered when

trying to evaluate the velocity due to a vortex core can be removed by establishing a cylinder

of radius cutoff along the x axis of the core inside of which the induced velocity is set to zero.

Section 11.3 presents the subroutine used to determine the velocity induced by a vari-

able strength vortex core using the above equations. The following section has a shortened

version of subroutine VELVF that only calculates the induced velocity due to a constant

strength filament, such as those in the wake mesh.
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11.3 Subroutine VELVF

* .** cCCCCcccccccccccccccccccccccCcccCCCCccCCcCCCccCCCCccCCCCcccCCCCcCC
C C

-~C )EE~EEC
C VELVF C
C 3E3*EEC
C C
C THIS SUBROUTINE CALCULATES THE VELOCITY INDUCED AT A POINT C
C BY A VARIABLE STRENGTH VORTEX FILAMENT. THIS FILAMENT C
C IS ALONG ONE SIDE OF A TRIANGULAR ELEMENT. THE VORTEX C
C STRENGTH IS GIVEN BY G(X)=l/2 Gi XX*2 + G2 X + G3. C

c C
C THE THREE CASES OF THE BASIS ARE: C
C C
C CASEl - INFLUENCE WITH Gl~l G2=03=0 C
C CASE2 -- INFLUENCE WITH G2=1 Gl=G3=0 C

-. C CASE3 -- INFLUENCE WITH G3=1 Gl=G2=0 C
C C
C THE INPUT VARIABLES ARE: C
C C

*C XP -- X POSITION OF THE POINT OF INTEREST C
C YP -- Y POSITION OF THE POINT OF INTEREST C
C ZP -- Z POSITION OF THE POINT OF INTEREST C
C XNODE -- X POSITION IN THE BODY FRAME OF NODE C
C YNODE -- Y POSITION IN THE BODY FRAME OF NODE C
C ZNODE -- Z POSITION IN THE BODY FRAME OF NODE C
C NODE1 - FIRST NODE OF THE CORE C
C NODE2 -- SECOND NODE OF THE CORE C
C FOURPI -- FOUR TIMES P1 C
C CUTWK -- CUTOFF DISTANCE INSIDE WHICH THE VEL=O C
C C
C THE OUTPUT VARIABLES ARE: C
C C
C VXVF(I) - X VELOCITY FOR CASE I C
C VYVF(I) - Y VELOCITY FOR CASE I C
C VZVF(I) - Z VELOCITY FOR CASE I C
C C

SUBROUTINE VELVF
IMPLICIT REALM8 (A-H,O-Z)
PARAMETER (ME=366,MN=216)
COMMON/CONSTS/ FOURPI, PI,CUTOFF, CUTWK
COMMOU/VELINP/ XP,YP,ZP,IDENTE,NODE1,NODE2
COMMON/VELVFO/ VXVF(3),VYVF(3),VZVF(3)
COMMON/ELDATA/ NELE,NODE,N(ME,3),XNODE(MN),YNODE(MN),ZNODE(MN)

* DIMENSION F(3)
C
C FINDING THE POSITION OF THE FILAMENT
C

Xl= XNODE(CNO DEl)
Vi =YNODE(NODE1)
Zl=ZNODE(NODEl)
X2=XNOOE( NODE2)

* Y2=YNODE( NODE2)
Z2=ZNODE(NODE2)

C
C CREATING THE Rl VECTOR
C

RIX=XP-Xl
RlY=YP-Y1
RIZ=ZP-Zl
RIMAG:DSQRT( RlX3ERIX+RlY*RIY+RlZ*RlZ)

C
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C CREATING THE R2 VECTOR
C

R2X=XP-X2
R2Y=YP-Y2
R2Z=ZP-Z2
R2MAG=DSQRT( R2X3*R2X+R2Y3ER2Y+R2Z*R2Z)

C
C CREATING A VECTOR IN THE DIRECTION OF THE FILAMENT
C

OMX=X2-XI
OMY=Y2-Yl
OMZ=Z2-Zl
OMMAG=DSQRT(OMXEOMX+OMY*OMY+OMZEOMZ)

C
INC USING THE CROSS PRODUCT FOR VECTOR IN DIRECTION OF VELOCITY

EX=OMY*ERlZ-OMZxER1Y
EY=OMZXR1X-OMXXRlZ
EZ=OMX*~Rl1Y -OMY ER iX
EMAG=DSQRT( EX*EX+EY*EY+EZ*EZ)

C
C CHECKING IF THE POINT IS INSIDE THE CUTOFF LIMIT
C

IF((EMAG/OMMAG/OMMAG) .LT.CUTWK) THEN
DO 10 I=1,3

* VXVF(I)=O.ODO
VYVF(I )=O. ODO
VZVF(I)=O. ODO

10 CONTINUE
ELSE

C
C MAKING THE E VECTOR A UNIT VECTOR
C

EX=EX/EMAG
EY= EY/ EMAG
EZ= EZ/ EMAG

C
C FINDING THETA 1 AND THETA 2 BY USING THE DOT PRODUCT
C

COST1=(R1XEOMX+R1Y3EOMY+R1Z3EOMZ)/(RlMAG*EOMMAG)
TH ETA 1=DACOS(CCO STI)
SINT1=DSIN(THETA1)
COST2=( R2X3NOMX+R2Y3EOMY+R2Z*EOMZ)/(CR2MAG*EOMMAG)
THETA2=DACOS(COST2)
SINT2=DSIN(THETA2)

C THE CONSTANT MULTIPLIED BY ALL FACTORS
C

FACT=1 .ODO/(R1MAG*ESINT13EFOURPI)
* C

C THE INFLUENCE OF GI
C

F( 1) =FACT3ERlMAGWR1MAG* . 5DO*C
* SINTI*SINT1*DLOG(C(1 .0DO-COST2)*SINTI)

'((1. ODO-COSTi )*SINT2))
+DCOS(2.ODO*THETAI)*(COST1-COST2)

* +DSIN(2. ODO3*THETA1)*(SINT1-SINT2))
C
C THE INFLUENCE OF G2
C

F(2)=FACT*RlMAG*(1.ODO-DCOS(THETAl-THETA2))
C
C THE INFLUENCE OF G3
C

F( 3) =FACT*(CCOST1-COST2)
C
C PUTTING TOGETHER THE VELOCITY
C
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DO 20 I=1,3
VXVF(I)=EXEF(I)
VYVF(I)=EYEF(I)

-~ -. VZVF( I )EZEF( I)
20 CONTINUE

END IF
RETURN
END
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11.4 Subr-ttne VELCF

V ccCCCCCccccccccccc cccccccCCCccCcCCccccCCCCcCCCCcCCcCCCccCccccCCCCc c
-~C C

C V3ELCF3 C

C THIS SUBROUTINE CALCULATES THE VELOCITY FOR A CONSTANT C
C STRENGTH VORTEX FILAMENT USING THE BIOT-SAVART LAW. C
C C
C THE INPUT VARIABLES ARE: C
C C
C XP -- X POSITION OF THE POINT OF INTEREST C
C YP -- Y POSITION OF THE POINT OF INTEREST C
C ZP -- Z POSITION OF THE POINT OF INTEREST C
C X1 - X POSITION IN THE BODY FRAME OF FIRST NODE C

*C Yl --- Y POSITION IN THE BODY FRAME OF FIRST NODE C
C Zi -- Z POSITION IN THE BODY FRAME OF FIRST NODE C
C X2 --- X POSITION IN THE BODY FRAME OF SECOND NODE C
C Y2 -- Y POSITION IN THE BODY FRAME OF SECOND NODE C

*C Z2 -- Z POSITION IN THE BODY FRAME OF SECOND NODE C
C FURP -- FOUR TIMES PI

C CUTWK -- CUTOFF DISTANCE INSIDE WHICH THE VEL=O C
C C
C THE OUTPUT VARIABLES ARE: C
C C
C VXCF -- X VELOCITY C
C VYCF -- Y VELOCIT
C VZCF -- Z VELOCITY C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE VELCF
IMPLICIT REAL*8(A-H,O-Z)
COMMON/VCFINP/ Xl,Y1,Zl,X2,Y2,Z2,VXCF,VYCF,VZCF
COMMON/VELINP/ XPYP,ZP,IDENTE,NODE1,NODE2
COMMON/CONSTS/ FOURPI,PI,CUTOFF,CUTWK

C
C CREATING THE OMEGA VECTOR
C

OMX=X2-Xl
OMY=Y2-Yl
OMZ=Z2-Zl

OM2=0MX3EOMX+OMYMOMY+OMZXOMZ

C
c REATNGTH XVETO

RlYPY
RlZ:ZP-Zl

C l=PY
C REATNGTH R2VETO

C
C RAIN H R2 VECTOR

R2CPY
* . R2ZZXP-X2

C 2=PY
C REAIN HEFVETO HIHISOMG XR

C
FzCRYEATNGTHZ FVETO WIC I OEG XR
FYOZRX-MCl

* FX=OMX*RlZ-OMZ*RlX
C YOZ~X-Mxl

C FINDING THE MAGNITUDE OF THE F VECTOR AND SEEING IF IT IS LT
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C THE CUTOFF LENGTH
C

FMAG2=FX*FX+FYEFY+FZ*EFZ
IF((FMAG2/0M2/0M2) .LE. (CUTWK3ECUTWK))THEN

C
C RETURNING THE VALUE OF ZERO IF INSIDE THE CUTOFF

VXCF=O.ODO
VYCF=O.ODO
VZCF=O.ODD
ELSE

C
C FINDING THE FACTOR TO BE MULTIPLIED BY GAMMA FOR THE VELOCITY
C

R12=RIX*RIX+RIY*RIY+RIZER1Z
R22 =R2X3(R2X+R2Y*R2Y+R2Z(R2Z
RIMAG=DSQRT(Rl2)
R2MAG=DSQRT(R22)

C
C FINDING Gi (OMEGA Rl)/ /Rl/ AND G2 (OMEGA R2)/ /R2/
C

Cii (OMX*RiX+OMY3ER1Y+OMZ3ER1Z)/R1MAG
G2= C MX3ER2X+OMY3*R2Y+OMZ3ER2Z)/R2MAG
FACTOR=(Gl-G2)/( FOURPI3*FMAG2)

C
C FINDING THE VELOCITY AT THE POINT OUTSIDE THE CUTOFF
C

V XC F FACTOR*FX
VYCF=FACTOREFY
VZCF=FACTOR*FZ
END IF
RETURN
END

Ii

Apedip1 8



Appendix III

Total Velocity at a Point in the Flow Field

111.1 Total Velocity Equation

The velocity at a point in the flow field is the sum of the induced velocity of the dis-

turb-nce and the free stream. The disturbance velocity is the sum of the velocity induced by

the bound surface (the wing ), and the free surface ( the wake ). The total velocity at a point

is

V. Vbnd + VWk -I

where V,,, is the velocity due to the bound surface, V., is the velocity due to the wake and

V1, is the velocity of the lifting-surface, the apparent free stream. This formulation results in

the velocity, as calculated in Equation I11-1, being the absolute velocity at the point in terms

of the base vectors of the body reference frame. The subroutines used to calculate the total

velocity are presented in tie following sections. Section 111.2 is the bound velocity routine,

Section 111.3 is the wake velocity routine, and Section 111.4 is the lifting-surface velocity routine.
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111.2 Subroutine VELBND

-w- CCCCCCCcCccCCCCCCcCCCCCCCCCCCCCcccccCCCcCCC ccCCCCCCCCCCCCCCCccCC
C C
C **33*EEC
C VELBND CC C
C CC THIS ROUTINE CALCULATES THE VELOCITY INDUCED AT A POINT C

C BY THE BOUND VORTEX. THE METHOD USE'S THE GLOBAL C
C VOTICITY AT A NODE, TRANSFORM IT INTO LOCAL COORDINATES C
C AND MULTIPLIES IT BY THE APPROAPRIATE VELE OUTPUT. C
C THE VELOCITY DUE TO THE EDGE CORES IS THEN CALCULATED. C
C THESE TWO VELOCITIES ARE THEN ADDED TO FORM THE TOTAL C"C BOUND VELOCITY. C
C C

* C THE INPUT VARIABLES ARE: C
C C
C ANORX --- NODAL NORMAL IN THE BODY X DIRECTION C
C ANORY --- NODAL NORMAL IN THE BODY Y DIRECTION C
C ANORZ -- NODAL NORMAL IN THE BODY Z DIRECTION C

* C CFACT --- FACTOR C AT EACH NODE OF ELEMENT IDENTE C
C DIRCOS--- DIRECTION COSINE MATRIX OF ELEMENT I C
C Gl --- QUADRADIC CIRCULATION STRENGTH OF EDGE I C
C G2 --- LINEAR CIRCULATION STRENGTH OF EDGE I C
C G3 --- CONSTANT CIRCULATION STRENGTH OF EDGE I C
C N(I,J)--- NODAL MATRIX FOR ELEMENT I NODE J C
C NCIRC --- NUMBER OF EDGES IN EACH CIRCUIT C
C NELE --- NUMBER OF ELEMENTS C
C NTOTCR--- NUMBER OF EGDE CIRCUITS C

• C OMEX --- NODAL VORTICITY IN THE BODY X DIRECTION C
C OMEY --- NODAL VORTICITY IN THE BODY Y DIRECTION C
C OMEZ --- NODAL VORTICITY IN THE BODY Z DIRECTION C
C VX --- OUTPUT VELOCITY FROM VELE IN X DIRECTION C
C VY --- OUTPUT VELOCITY FROM VELE IN Y DIRECTION C
c vz --- OUTPUT VELOCITY FROM VELE IN Z DIRECTION C
C VXVF --- OUTPUT VELOCITY FROM VELVF IN X DIRECTION C
C VYVF --- OUTPUT VELOCITY FROM VELVF IN Y DIRECTION C
C VZVF --- OUTPUT VELOCITY FROM VELVF IN Z DIRECTION C
C C
C THE OUTPUT VARIABLES ARE: C
C C
C IDENTE--- INPUT TO VELE ROUTINE ELEMENT IDENTIFIER C
C NODEI --- INPUT TO VELVF ROUTINE FIRST NODE NUMBER C
C NODE2 --- INPUT TO VELVF ROUTINE SECOND NODE NUMBER C

0 C VBX --- X BOUND VELOCITY C
C VBX --- Y BOUND VELOCITY C
C VBZ --- Z BOUND VELOCITY C
C C
c C,-.CCC CC CCCCC CCCCCCCCCCC CCCC CCCCCC CCCCCCCC CCCCCCCCCCCCCCCCC CCCCCCCCCCCCC

SUBROUTINE VELBND
IMPLICIT REAL*8(A-H,O-Z)

• PARAMETER (ME=366,MN=216,MH=8C,MC=3,MCI=80)
COMMON/ELDATA/ NELE,NODE,N(ME,3),XNODE(MN),YNODE(MN),ZNODE(MN)
COMMON/EDGEDA/ NOPEN,NCLOSE,NTOTCR,NEDG(MC,MCI,2),NCIRC(MC)
COMMON/CORNER/ AELE(ME),BELE(ME),CELE(ME),DIRCOS(ME,3,3)
COMMON/VELINP/ XP,YP,ZP,IDENTE,NODEI,NODE2
COMMON/VELVFO/ VXVF(3),VYVF(3),VZVF(3)
COMMON/GNUMBE/ Gl(MC,MCI),G2(MC,MCI),G3(MC,MCI)
COMMON/VELOUT/ VX(6),VY(6),VZ(6)
COMMON/OMEGAL/ OMLOCX(3),OMLOCY(3)
COMMON/GNORMS/ ANORX(MN),ANORY(MN),ANORZ(MN),CFACT(ME,3)
COMMON/GOMEGB/ OMEX(MN),OMEY(MN),OMEZ(MN)

Appendix III 290

N. 6



COMMON/VBOUND/ VBX, VBY,VBZ
C
C INITIALIZING THE VELOCITIES
C

VBX=O.ODO
VBY=O.0Do
VBZ=O. ODO

C
C LOOPING THROUGH THE ELEMENTS FOR EACH ONE'S CONTRIBUTION
C

DO 10 I=1,NELE
IDENTE=I

C
C FINDING THE LOCAL VORTICITY AT EACH NODE OF ELEMENT I

-~ - C
DO 20 J=1,3

ANX=ANORX(N(I,J))*DIRCOS(I,1,1)
+ANORY(NCI,J) )*DIRCOS(I, 1,2)
+ANORZ(N(I,J))*DIRCOS(I,1,3)

ANY=ANORX(N(I,J) )*DIRCOS(I,2,1)
+ANORY(N(I,J) )*DIRCOS(I,2,2)
+ANORZ(N(IPJ) )*DIRCOS(I,2,3)

ANZ=ANORX(N(I,J) )3DIRCOS(I,3, 1)
+ANORY(N(I,J) )3DIRCOS(I,3,2)

* +ANORZ(N(I,J) )*DIRCOS(I,3,3)
All=CFACT(I,J)*(ANX*EANX+ANZ*ANZ)/(ANZEANZ)
A12=CFACT( I,J )iANX3ANY/(ANZ3EANZ)

* - A22=CFACT( I, J)*(ANY*ANY+ANZ*ANZ)/(ANZ*ANZ)
WOMEGX=OMEX(N(I,J))*EDIRCOS(I,1,1)

+OMEY(N(I,J) )3DIRCOS(I, 1,2)
+OMEZ(N(I,J))*DIRCOS(I,1,3)

WOMEGY=OMEX(N(I,J))*EDIRCOS(I,2, 1)
+OMEY(N(I,J) )*DIRCOS(I,2,2)
+OMEZ(N(I,J) ))DIRCOS(I,2,3)

OMLOCX(J ) All*WOMEGX+A12*NOMEGY
OMLOCY( J ) Al2xWOMEGX+A22*WOMEGY

20 CONTINUE
C
C CALLING THE VELOCITY FOR ELEMENT I
C

CALL VELE

C ADDING TO THE OTHER ELEMENTS
C

DO 30 J=1,3
VBX=VBX+VX(J )*OMLOCX(J)

a +VX(J+3)*OMLOCY(J)
VBY=VBY+VY(J)*OMLOCX( J)

+VY( J+3)MOMLOCY(J)
VBZ=VBZ+VZ(J )*OMLGCX(J)

+VZ( J+3)3*OMLOCY(J)
30 CONTINUE
10 CONTINUE

C
C ADDING THE INFLUENCE OF THE CORES ALONG THE EDGE
C

DO 40 1=1,NTOTCR
DO 50 Jq1,NCIRC(I)

NODE1=NEDG( I,J, 1)
NODE2=NEDG( I,J, 2)

CALL VELVF
VBX=VBX+G1( I, J)*VXVF( 1)

+G2(I,J)3EVXVF(2)
+G3(I,J)*VXVF(3)

VBY=VBY+G1 (I, J )3VYVF( 1)
+G2(I,J)*VYVF(2)
+G3(I ,J )XVYVF(3)

VBZ=VBZ+Gl(CI, J )VZVF( 1)
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+G2(I,J)*VZVF(2)
+G3(I,J)*VZVF(3)

50 CONTINUE
4j0 CONTINUE

RETURN
END

-4-
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111.3 Subroutine VELWK
'N.

SCCCCcccCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCc

C C

C 3 VELWK C

C C
C THIS SUBROUTINE FINDS THE VELOCITY INDUCED AT A POINT IN C

- C SPACE CAUSED BY THE WAKE I.E. THE FREE VORTEX SHEET. C
C THIS IS DONE BY SUMMING THE CONTRIBUTION FROM ALL THE C
C WAKE FILAMENTS. C
c C
C THE INPUT VARIABLES ARE: C
C C
C GWAKE --- CIRCULATION AROUND WAKE RING C
C NWPTS --- NUMBER OF COLUMNS IN THE WAKE MESH C
C NCOVCR--- NUMBER OF CONVECTING CIRCUITS C

V C NRWAKE--- NUMBER OF ROWS IN THE WAKE MESH C
C VXCF --- X VELOCITY OF A CORE FROM VELCF C
C VYCF --- Y VELOCITY OF A CORE FROM VELCF C

0C VZCF -- Z VELOCITY OF A CORE FROM VELCF C
C C
C THE OUTPUT VARIABLES ARE: C
C C

SC Xl --- INPUT TO VELCF FIRST X POSITION OF CORE C
C -- INPUT TO VELCF FIRST Y POSITION OF CORE C
C Zi --- INPUT TO VELCF FIRST Z POSITION OF CORE C

C X2 --- INPUT TO VELCF SECOND X POSITION OF CORE C
C Y2 --- INPUT TO VELCF SECOND Y POSITION OF CORE C
C Z2 --- INPUT TO VELCF SECOND Z POSITION OF CORE C
C VWKX --- X WAKE VELOCITY C
C VWKY --- Y WAKE VELOCITY C
C VWKZ --- Z WAKE VELOCITY C
C C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE VELWK
IMPLICIT REALX8(A-H,O-Z)
PARAMETER (ME=366,MN=216,MW=80,MC=3,MCI=80)
COMMON/VCFINP/ XI,YI,Z1,X2,Y2,Z2,VXCFVYCF,VZCF
COMMON/VEWAKE/ VWKX,VWKY,VWKZ
COMMON/PO1WAK/ XlWAK(MC,MCI,MW),Y1WAK(MC,MCI,MW),Z1WAK(MC,MCI,MW)
COMMON/PO2WAK/ X2WAKCMC,MCI,MW),Y2WAK(MC,MCI,MW),Z2WAK(MC,MCI,MW)

0 COMMON/TIMESD/ TIME,DTIME,NMOTIO,NCURTM,NTIMENSTIME,NWPTS,MAXWK
COMMON/STRWAK/ GAVE(MC,MCI),GWAKE(MC,MCI,MW),NRWAKE(MC,MW)

- . COMMON/CONVEC/ NCOVCRNCONCR(MCI),NCON(MC,MCI,2),NCONPO(MCI)
-. C

- C SETTING THE INITIAL VALUE IN THE SUM
C

VWKX=O.ODO
VWKY=O.ODO

* VWKZ=O.ODO
C
C LOOPING THROUGH ALL THE WAKE
C

DO 10 I:1,NWPTS
IPI:I+

C
C LOOPING THROUGH ALL THE CIRCUTS

* C
DO 20 J=I,NCOVCR

C
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C LOOPING THROUGH EACH ELEMENT IN A CIRCUT
C

DO 30 K=1,NRWAKE(J,I)-1
EACHKP1=K+l

C EACHWAKE ELEMENT LOOKS LIKE
C 2(J,K,I) 1(J,K,I)
c C< -- - - - - - -
C I2
C
C 31 G if I
CI I I I GAVE
c > IV
C V4
C ----------------- >

*C 2(J,KP1,I) l(J,KPl,I)
C

Xl=X1WAKCJ,KPI,I)
Yl=YlWAK(J,KP1, I)
X2=X1WAK(J,K, I)
YZ=XIWAK(J, K, I)

Z2=ZlWAK(J,K, I)
CALL VELCF
VX1=VXCF
VYI=VYCF
VZi =VZCF

C
C THE SECOND SEGMENT
C

Y1=XlWAK(J,K, I)

X2=X2WAK(J,K, I)
Y2=Y2WAK(J,K, I)
Z2=Z2WAK(J,K,I)
CALL VELCF
VX2=VXCF
VY2=VYCF
VZ2=VZCF

C
C THE THIRD SEGMENT

'N C
XI=X2WAK(J,K,I)
Y1=Y2WAK(J,K,I)
Z1=Z2WAK(J,K, I)
X2=X2WAK(J,KP1, I)
Y2=Y2WAK(J,KP1,I)

* Z2=Z2WAK(J,KP1, I)
~ CALL VELCF

VX3=VXCF
VY3=VYCF
VZ3=VZCF

C
C THE FOURTH SEGMENT
C

* Xl=X2WAK(J,KPI, I)
Yl=Y2WAK(J,KP1, I)
Z1=Z2NAK(J,KP1, I)
X2=XlHAK(J,KPI, I)
Y2=Y1WAK(J,KP1, I)
Z2=ZlWAK(J,KPI,I)
CALL VELCF
VX4=VXCF

* VY4=VYCF
VZ4=VZCF

C
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C DIGTECNRBTO O H N NOTERS
.5.

V.XVWXGAK(,,I V15-+X3V4

C 0 ADDTINGHE OTIUTO FTEOE NOTERS
55RETURC

ENDVK+GAEJK I~V1V2+X+X.

AppendixGWKE( 111 295+Y2VY+V4



111.4 Subroutine VELLS
N

CCCCCCCCCCCCCCCCCCCCCcCCCCCCc CCCCCCCCCCCCCCCCCCCCCCcCCCCCccc
C C
C C
C X VELLS * C
C * * C
C C
C THIS SUBROUTINE FINDS THE VELOCITY AT A POINT IN SPACE C
C CAUSED BY MOVING THE LOCAL COORDINATE FRAME. C
C C
C C
C THE INPUT VARIABLES ARE: C
C C
C CBTOIN--- DIRECTION COSINE MATRIX OF BODY TO INERTIAL C
C PMOMX --- X POSITION OF ROTATION POINT C
C PMOMY --- Y POSITION OF ROTATION POINT C
C PMOMZ --- Z POSITION OF ROTATION POINT C
C WBNX --- X COMPONENT OF ANGULAR VELOCITY VECTOR C
C WBNY --- Y COMPONENT OF ANG';LAR VELOCITY VECTOR C
C WBNZ --- Z COMPONENT OF ANGULAR VELOCITY VECTOR C

* C XP --- X POSITION WHERE VELOCITY IS TO BE FOUND C
C YP --- Y POSITION WHERE VELOCITY IS TO BE FOUND C
C ZP --- Z POSITION WHERE VELOCITY IS TO BE FOUND C
C C
C THE OUTPUT VARIABLES ARE: C
C C
C VLSX --- X VELCOITY DUE TO MOVING BODY FRAME C
C VLSY --- Y VELCOITY DUE TO MOVING BODY FRAME C
C VLSZ --- Z VELCOITY DUE TO MOVING BODY FRAME C
C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE VELLS
IMPLICIT REAL*8(A-H,O-Z)
COMMON/VLSURF/ VLSX,VLSY,VLSZ
COMMON/VELINP/ XP,YP,ZP,IDENTE,NODE1,NODE2
COMMON/RATED1/ WBNX,WBNY,WBNZ
COMMON/MODATA/ PMOMX,PMOMYPMOMZ,SPAN,CHORD
COMMON/CMTRIX/ CBTOIN(3,3)

C
C FINDING THE R VECTOR FROM THE CENTER OF ROTATION
C

RX=XP-PMOMX
RY=YP-PMOMY
RZ=ZP-PMOMZ

C
C FINDING THE VELOCITY DUE TO THE ROTATION RATE
C

VX=WBNY*RZ-WBNZXRY
VY=WBNZNRX-WBNX*RZ
VZ=WBNX*RY-WBNYNRX

C
C ADDING THE VELOCITY DUE TO THE ANGLE OF ATTACK
C

VLSX=CBTOIN(1,1)+VX
VLSY=CBTOIN(1,2)+VY
VLSZ=CBTOIN(1,3)+VZ
RETURN
END
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